

Subject card

Subject name and code	Applications of mathematical methods in physics and engineering, PG_00064052									
Field of study	Technical Physics									
Date of commencement of studies	October 2024		Academic year of realisation of subject			2026/2027				
Education level	first-cycle studies		Subject group			Optional subject group Subject group related to scientific research in the field of study				
Mode of study	Full-time studies		Mode of delivery			at the university				
Year of study	3		Language of instruction			Polish				
Semester of study	6		ECTS credits			5.0				
Learning profile	general academic profile		Assessment form			assessment				
Conducting unit	Division of Atomic Molecular and Optical Physics -> Institute of Physics and Applied Computer Science -> Faculty of Applied Physics and Mathematics -> Faculties of Gdańsk University of Technology							Science ->		
Name and surname	Subject supervisor	dr inż. Sebastian Bielski								
of lecturer (lecturers)	Teachers									
Lesson types	Lesson type	Lecture	Tutorial	Laboratory	Projec	t	Seminar	SUM		
	Number of study hours	30.0	30.0	0.0	0.0		0.0	60		
	E-learning hours included: 0.0									
	eNauczanie source addresses:									
	Moodle ID: 2910 Zastosowania metod matematycznych w fizyce i technice (od 2025/26) https://enauczanie.pg.edu.pl/2025/course/view.php?id=2910									
Learning activity and number of study hours	Learning activity Participation in classes includ plan				Self-study SUM		SUM			
	Number of study hours	60		5.0		60.0		125		
Subject objectives	The aim of the course is to present and to systematize some mathematical objects, definitions or methods as tools that can be used to solve physical problems. Another aim is to develop the skills of solving problems of physics.									
Learning outcomes	Course outcome		Subject outcome		Method of verification					
	[K6_W02] has systematized knowledge of the basics of physics, including mechanics, thermodynamics, electricity and magnetism, optics, atomic and particle physics, solid-state physics, nuclear and elementary particle physics		The student is able to correctly formulate selected problems in mechanics, electromagnetism, and quantum mechanics.			[SW1] Assessment of factual knowledge				
	[K6_U02] analyzes and solves simple scientific and technical problems, based on possessed knowledge, using analytical, numerical, simulation and experimental methods		The student applies learned mathematical concepts and methods to solving selected problems in mechanics, electromagnetism, heat transfer, and quantum mechanics.			[SU1] Assessment of task fulfilment				
	[K6_W03] has systematized knowledge of higher mathematics, including algebra, analysis, probability theory and numerical methods, allowing for basic description, understanding and modelling of physical phenomena and some technical processes		The student uses the following mathematical methods and concepts applied in physics: special functions, Green's function method, integral transform methods, phasor method.			[SW1] Assessment of factual knowledge				

Subject contents	Course content – lecture Gamma function							
	GramSchmidt orthogonalization							
	Hermite polynomials and their properties; the harmonic oscillator problem							
	Legendre polynomials and their properties; associated Legendre functions; spherical harmonics							
	The Bessel equation; Bessel functions and their properties; class of equations whose solutions involve Bessel functions; spherical Bessel functions							
	The Greens function method: construction of Greens functions for one-dimensional problems; Greens functions for the Laplace and Helmholtz equations in three dimensions							
	Complex functions of a real variable and their applications: the phasor method, the symbolic method							
	Laplace integral transform							
	Fourier integral transform							
	Course content – exercises Application of the Gamma function to the evaluation of selected integrals							
	Use of the GramSchmidt orthogonalization method to construct orthogonal polynomials							
	Modifications of the harmonic oscillator problem							
	Examples of applications of Legendre polynomials and spherical harmonics: electrostatic potential of charge distributions, the radial Schrödinger equation							
	Applications of Bessel functions, e.g., heat transfer in an infinite cylinder; the circular membrane problem							
	Application of the Greens function method to one-dimensional problems							
	Use of the phasor method and the symbolic method in problem solving							
	Problems involving the use of integral transform methods							
Prerequisites and co-requisites	basics of differential calculus and integral calculus							
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade					
	2 tests	42.0%	100.0%					
Recommended reading	Basic literature	M. Abramowitz, I. A. Stegun, "Handbook of Mathematical Functions" F. W. Byron, R. W. Fuller, "Mathematics of Classical and Quantum Physics" H. W. Wyld, "Mathematical methods for physics"						
	Supplementary literature	Donald A. McQuarrie, Mathematical Methods for Scientists and Engineers, University Science Books, 2003						
	eResources addresses							

Example issues/ example questions/ tasks being completed	Lecture					
	Using the generating function, derive the recurrence relations satisfied by the Hermite polynomials.					
	Show that the spherical harmonics are eigenfunctions of the orbital angular momentum squared operator.					
	Tutorial					
	Apply the Gram-Schmidt orthonormalization method to the functions $\{x_n\}$, $n=0,1,2,$ on the interval [1; 1] with the weighting function $rho(x)=1$.					
	Find eigenvalues and normalized eigenfunctions of the 1D harmonic oscillator subjected to a constant external force F.					
	Determine the general solution to the differential equation describing the motion of a pendulum which length is a linear function of time.					
	Calculate the sum of two currents i1(t)=3 cos (157 t + pi/4) and i2(t)= -4 cos (157 t - pi/4)					
Practical activites within the subject	Not applicable					

Document generated electronically. Does not require a seal or signature.