
Data wygenerowania: 29.12.2025 16:54 Strona 1 z 4

 

 
Subject card
 
 
Subject name and code Object-oriented programming languages III, PG_00064060

Field of study Technical Physics

Date of commencement of 
studies

October 2024 Academic year of 
realisation of subject

2026/2027

Education level first-cycle studies Subject group Optional subject group
Subject group related to scientific 
research in the field of study

Mode of study Full-time studies Mode of delivery at the university

Year of study 3 Language of instruction English

Semester of study 5 ECTS credits 5.0

Learning profile general academic profile Assessment form assessment

Conducting unit Department of Theoretical Physics and Quantum Computing -> Faculty of Applied Physics and Mathematics 
-> Faculties of Gdańsk University of Technology

Name and surname 
of lecturer (lecturers)

Subject supervisor dr hab. Jan Franz
Teachers

Lesson types Lesson type Lecture Tutorial Laboratory Project Seminar SUM
Number of study 
hours

15.0 0.0 45.0 0.0 0.0 60

E-learning hours included: 0.0

Learning activity 
and number of study hours

Learning activity Participation in didactic 
classes included in study 
plan

Participation in 
consultation hours

Self-study SUM

Number of study 
hours

60 5.0 60.0 125

Subject objectives The aim of this course is to introduce students to object-oriented programming (OOP) in Java with a focus
on applications in physics and applied informatics. Students will learn to design, implement, and test
scientific software using modern Java tools, libraries, and design patterns. Emphasis is placed on writing
robust, maintainable code and developing the skills needed for larger projects in research and technology.

Learning outcomes Course outcome Subject outcome Method of verification
[K6_W05] has knowledge of 
programming methodology and 
techniques, and the use of 
selected IT tools in physics and 
technology

is able to apply object-oriented
programming methodology and
techniques, and make effective
use of selected computational
tools to solve problems in physics
and technology.

[SW1] Assessment of factual 
knowledge

[K6_U03] knows programming 
languages and can use basic 
software packages

is able to write programs in an
object-oriented language, use
project management tools, apply
testing frameworks, and make use
of selected scientific libraries to
support problem-solving in physics
and technology.

[SU1] Assessment of task 
fulfilment

[K6_W01] understands the 
importance of physics and its 
applications in connection to 
civilization

is able to model simple physical
systems using object-oriented
programming and reflect on how
computational skills support the
broader use of physics in science
and technology.

[SW2] Assessment of knowledge 
contained in presentation

[K6_K01] understands the need to 
learn and improve professional 
and personal competencies, 
inspires and organizes other 
people’s learning process

is able to independently extend
their knowledge of object-oriented
programming, critically apply
object-oriented tools and design
patterns to scientific problems,
and collaborate in ways that
support and inspire the learning of
others.

[SK5] Assessment of ability to 
solve problems that arise in 
practice



Data wygenerowania: 29.12.2025 16:54 Strona 2 z 4

Subject contents Course content – lecture
1. The Java Ecosystem & Project Setup

 

Java Virtual Machine (JVM), Java Development Kit (JDK), Integrated Development Environments (IDEs); 
project management with Maven and Gradle.

2. Classes, Objects & Testing

Classes, fields, methods, constructors; introduction to unit testing with JUnit.

3. Primitive Types, Wrappers, Arrays & Efficient Java Matrix Library (EJML)

Primitive types vs objects; arrays; wrapper classes; first look at EJML.

4. Inheritance and Interfaces

Inheritance, overriding, abstract classes, interfaces.

5. Exceptions and Robust Code

Checked vs unchecked exceptions; error handling strategies.

6. Collections Framework

List, Set, Map; iterators; when to use collections.

7. Design Patterns I

Factory, Singleton, Observer (with light Unified Modeling Language (UML) illustrations).

8. Generics & Collections in Practice

Generic classes and methods; collection implementations.

9. Refactoring & Testing Practices

Cohesion, coupling, SOLID (Single responsibility, Openclosed, Liskov substitution, Interface segregation, 
Dependency inversion) principles; test-driven development (TDD).

10. Lambda Expressions (Basics)

Functional interfaces, lambda syntax.

11. Streams and Applications of Lambdas

Stream Application Programming Interface (API): map, filter, reduce; parallel streams.

12. Scientific Libraries in Java

EJML in more depth; Apache Commons Math; JavaScript Object Notation (JSON) and Extensible Markup 
Language (XML) parsing.



Data wygenerowania: 29.12.2025 16:54 Strona 3 z 4

13. Design Patterns II & Project Organization

Strategy, Composite; modular project structure with Maven/Gradle.

14. Student Project Presentations

Recap of object-oriented programming (OOP) in Java and integration of tools.

15. Summary & Outlook

Future directions in programming (Java trends, concurrency, functional style, artificial intelligence (AI 
assisted coding).

Course content – laboratory
1. The Java Ecosystem & Project Setup

 

Create first Maven project; run a simple physics-related program.

2. Classes, Objects & Testing

Implement a Particle class and basic unit tests.

3. Primitive Types, Wrappers, Arrays & Efficient Java Matrix Library (EJML)

Vector operations with arrays and EJML.

4. Inheritance and Interfaces

Class hierarchy for different particle types.

5. Exceptions and Robust Code

Robust file input/output (I/O) and simple simulation error handling.

6. Collections Framework

Store and analyze particle trajectories with collections.

7. Design Patterns I

Implement a particle factory and observer for logging.

8. Generics & Collections in Practice

Generic containers for results; use sorted sets/maps.

9. Refactoring & Testing Practices

Refactor earlier code and extend test coverage.



Data wygenerowania: 29.12.2025 16:54 Strona 4 z 4

10. Lambda Expressions (Basics)

Apply lambdas to simple numerical transformations.

11. Streams and Applications of Lambdas

Analyze simulation results with streams.

12. Scientific Libraries in Java

Solve linear systems and parse input from files.

13. Design Patterns II & Project Organization

Apply Strategy pattern to select simulation models.

14. Student Project Presentations

Final project demos with short presentations.

15. Summary & Outlook

Discussion of how course skills transfer to research projects.

Prerequisites 
and co-requisites

Object-oriented programming languages 1 and 2

Assessment methods 
and criteria

Subject passing criteria Passing threshold Percentage of the final grade
final exam 50.0% 75.0%
lab credit 50.0% 25.0%

Recommended reading Basic literature 1. Joshua Bloch, Effective Java, 3rd Edition, Addison-Wesley, 2017
2. Raoul-Gabriel Urma, Mario Fusco, Alan Mycroft, Modern Java in 

Action, Manning Publications, 2018
Supplementary literature 1. Cay S. Horstmann, Core Java Volume 1 Fundamentals. 11Th 

edition, Prentice Hall, 2018
2. Cay S. Horstmann, Core Java Volume 2 Advanced Features. 11Th 

edition, Prentice Hall, 2018
3. Herbert Schildt, Java: The Complete Reference. 11Th edition, 

McGraw-Hill, 2019
eResources addresses

Example issues/ 
example questions/ 
tasks being completed

1.) You are given a single class Simulation that directly handles file input, data storage, calculations, and
result output. Identify at least two problems with this design. Suggest a refactoring strategy using separate
classes or packages.
2.) Programming Task: Radioactive Decay Simulation
Implement a Particle class with attributes (id, half-life, state). Store particles in a collection and simulate
decay step by step using random numbers. Handle invalid input with exceptions. Include at least one JUnit
test. Print the number of undecayed particles after each step.

 

Practical activites within 
the subject

Not applicable

Document generated electronically. Does not require a seal or signature.


