Subject card

GDANSK UNIVERSITY
OF TECHNOLOGY

Subject name and code

Software engineering, PG_00064064

Field of study

Technical Physics

Date of commencement of
studies

October 2024

Academic year of 2026/2027

realisation of subject

Education level

first-cycle studies

Subject group Optional subject group
Subject group related to scientific

research in the field of study

Mode of study

Full-time studies at the university

Mode of delivery

Year of study 3 Language of instruction Polish
Semester of study 6 ECTS credits 7.0
Learning profile general academic profile Assessment form exam

Conducting unit

Division of Theoretical Physics and Quantum Informaton -> Institute of Physics and Applied Computer
Science -> Faculty of Applied Physics and Mathematics -> Faculties of Gdansk University of Technology

Name and surname

Subject supervisor dr hab. inz. Marta tabuda

of lecturer (lecturers) Teachers
Lesson types Lesson type Lecture Tutorial Laboratory | Project Seminar SUM
Number of study 30.0 0.0 0.0 45.0 0.0 75
hours
E-learning hours included: 0.0
Learning activity Learning activity Participation in didactic Participation in Self-study SUM
and number of study hours classes included in study consultation hours
plan
Number of study 75 5.0 95.0 175
hours

Subject objectives

The aim of the course is to familiarize students with the principles of planning, architectural design, and
software development methods, including scientific software. The objective of the project classes is the
practical application of knowledge in software engineering through the implementation of a team-based IT
project. Students learn how to plan and manage a project, analyze and specify requirements, select an
appropriate software development model, and design the architecture and structure of a system. The
classes develop skills in system modeling using UML, teamwork, project documentation, and the use of
modern tools and technologies that support the software development process.

Data wygenerowania:

18.12.2025 13:04

Strona 1z4




Learning outcomes

Course outcome

Subject outcome

Method of verification

[K6_U03] knows programming
languages and can use basic
software packages

The student is able to create,
compile, and run programs in a
selected programming language
(e.g., Python), using basic
language constructs such as
control statements, data

structures, and functions/methods.

The student is able to use
selected software packages and
development tools (e.g., IDEs,
version control systems,
repositories, standard libraries,
and frontend frameworks) in the
software development process.

[SU1] Assessment of task
fulfilment

[SU4] Assessment of ability to
use methods and tools

[K6_KO05] presents own work
results, transfers information in a
commonly understandable
manner, communicate and self-
evaluate, as well as constructively
evaluate the effects of other
persons’ work

The student is able to prepare and
present the results of a team IT
project in a way that is
understandable to audiences with
varying levels of technical
knowledge.

The student is able to perform
selfassessment

of their own work and

provide constructive evaluation of
the contributions and outcomes of
other team members.

[SK4] Assessment of
communication skills, including
language correctness

[SK3] Assessment of ability to
organize work

[K6_WO05] has knowledge of
programming methodology and
techniques, and the use of
selected IT tools in physics and
technology

The student is familiar with
software development
methodologies (e.g., waterfall,
iterative, agile) and basic
programming techniques used in
software engineering.

The student is familiar with
selected IT tools supporting the
software development process
(development environments,
version control systems, modeling
tools such as CASE tools for UML
diagrams, and testing tools), is
able to use them, and
understands their application in
problems of physics and
engineering.

[SW1] Assessment of factual
knowledge

[K6_KO04] cooperate and work in a
group, performing different
functions

The student is familiar with the
basic team roles in IT projects
(e.g., analyst, designer,
programmer, tester, team leader,
Scrum Master, Product Owner)
and the principles of effective
teamwork in software engineering.
The student is able to work
effectively in a project team,
responsibly fulfilling the assigned
role, respecting established
collaboration rules, and adapting

to the changing needs of the team.

The student is able to
communicate within a project
team, share tasks, report
progress, and participate in team
decision-making.

[SK1] Assessment of group work
skills

[SK3] Assessment of ability to
organize work

Data wygenerowania:

18.12.2025 13:04

Strona 2z4




Subject contents

Course content — lecture

1. Introduction to software engineering. Characteristics of computer systems engineering.

2. Planning an IT project: basic characteristics, concepts, project stakeholders; project lifecycle and scope.
Task planning. Problem identification; enriched representation.

3. Feasibility study of an IT project. Objectives, evaluation dimensions: technical, economic, organizational,
and legal; project risk assessment.

4. Requirements engineering process. Defining and analyzing requirements. Software requirements and
their documentation. Characteristics of a good requirement. Methods of requirements elicitation.
Classification and categorization of requirements. Requirements approval. Requirements management.

5. Modeling the software development process. Project and software development lifecycle.

6. Strategies and processes for managing IT projects: traditional approaches (waterfall, V-model,
prototyping, incremental, spiral).

7. Agile software development methodologies (Agile, reuse, and component-based development). Extreme
programming. SCRUM: processes, artifacts, roles. Selection of project management strategies.

8. Architectural design. System structure, control models, modular decomposition, architectures
characteristic for different IT products.

9. Object-oriented design. Objects and classes, object-oriented design processes, project evolution.

10. UML language. CASE tools for computer-aided software design.

11. Design of distributed systems. Analysis and design patterns. Classification and examples.

12. Real-time systems design. Hardware architecture. Design of critical systems. Safety and failure analysis.
13. System administration. Containerization, microservices, cloud computing.

14. Data access design and data organization.

15. Prototyping: development environments and technologies. Al in system design.

Course content — project

PROJECT: Project classes include the identification and analysis of requirements as well as object-oriented
modeling using CASE tools and architectural design. The work is carried out in small teams. Each group
completes a set of exercises related to an area selected by the team and intended for computerization. The
outcome is a complete set of documentation (project assumptions, feasibility report, system requirements
specification) and a system architecture design, including UML diagrams, system administration, interface
design, data management, as well as a prototype outline of the implementation.

Prerequisites
and co-requisites

None.

Assessment methods
and criteria

Subject passing criteria Passing threshold Percentage of the final grade
Project tasks 50.0% 75.0%
Presentation 50.0% 10.0%
Tests for exam 50.0% 15.0%

Recommended reading

Basic literature

1. Krzysztof Sacha, Inzynieria Oprogramowania, PWN 2022

2. lan Sommerville, Inzynieria Oprogramowania, wyd.11, PWN 2019

3. Max Kanat-Alexander, Zrozumie¢ oprogramowanie, Helion 2019

4. Robert C. Martin, Czysta architektura. Struktura i design
oprogramowania. Przewodnik dla profesjonalistow, Helion 2022

5. Mike Cohn, Agile. Metodyki zwinne w planowaniu projektéw, Helion

2019

6. Robert C. Martin, Zwinne wytwarzanie oprogramowania. Najlepsze
zasady, wzorce i praktyki, Helion 2017

Data wygenerowania: 18.12.2025 13:04

Strona 3z4




Supplementary literature

1. Bernd Bruegge, Allen H. Dutoit, Inzynieria oprogramowania w ujeciu
obiektowym UML, wzorce projektowe i Java Helion 2011

2. Keeling Michael, Zostan architektem oprogramowania, PWN 2019

3. Piotr Gaczkowski, Adrian Ostrowski, Architektura oprogramowania
bez tajemnic, Helion 20224.

4. Praca zbiorowa, Inzynieria oprogramowania w praktyce, PWN, 2022.

5. Strony domowe do wybranych narzedzi informatycznych. Instrukcje
obstugi, przyktady.

6. Roger S. Pressman, Bruce R. Maxim, Inzynieria oprogramowania.
Praktyczne podejscie, Helion, 2021 (wyd. 9)

eResources addresses Supplementary

http://cleancoder.com/products - Homepage of Robert Martin, software
engineer, instructor and author. Expert in software design and
development.

Example issues/
example questions/
tasks being completed

1.Planning and feasibility assessment of an IT project: technical, economic, organizational analysis and
risk evaluation.

2.Requirements engineering: methods for eliciting, documenting, and managing software requirements.
3.IT project lifecycle and software development models: comparison of traditional and agile approaches.
4.Designing IT system architecture: system structure, modular decomposition, and architectural styles.
5.0bject-oriented design and UML modeling: classes, objects, and diagrams supporting system design.
6. Agile IT project management methodologies: SCRUM, Agile, extreme programming, and project
strategy selection.

7.Modern technologies in software engineering: containerization, microservices, cloud computing, and Al
in system design.

Optional: trip to the Tricity Academic Computer Network Center (Centrum Informatyczne Trojmiejskiej
Akademickiej Sieci Komputerowej).

Practical activites within
the subject

Not applicable

Document generated electronically. Does not require a seal or signature.

Data wygenerowania: 18.12.2025 13:04 Strona 4z 4




