

SDAŃSK UNIVERSITY 的 OF TECHNOLOGY

Subject card

Subject name and code	Fundamentals of Control Engineering II, PG_00053201							
Field of study	Automation, Robotics and Control Systems							
Date of commencement of studies	October 2024		Academic year of realisation of subject			2025/2026		
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study		
Mode of study	Full-time studies		Mode of delivery			at the university		
Year of study	2		Language of instruction			Polish		
Semester of study	4		ECTS credits			2.0		
Learning profile	general academic profile		Assessment form			assessment		
Conducting unit	Katedra Inteligentnych Systemów Sterowania i Wspomagania Decyzji -> Faculty of Electrical and Control Engineering							
Name and surname	Subject supervisor		dr inż. Rafał Łangowski					
of lecturer (lecturers)	Teachers							
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	-		SUM
	Number of study hours	0.0	0.0	30.0	0.0	0.0		30
	E-learning hours included: 0.0							
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study		SUM
	Number of study 30 hours			1.0		19.0		50
Subject objectives	The main module objectives are: a) to acquire knowledge needed for modelling and analysis of dynamic systems of low order, b) to design of control systems for such systems.							

Course outcome 7] has basic knowledge o control and automation 7] can build and analyze of systems and systems in related to control systems omation	Subject outcome On successful completion of this course, the student will be able to: - Explain structures and properties of P, PI and PID controllers and experimentally determine their parameters by applying Ziegler - Nichols methods to lower order processes; - Explain structures of state-feedback controllers, also in the case of unmeasured state variables to lower order processes; - Design by pole placement the basic controller systems meeting the performance specifications in time domain and state observers. On successful completion of this course, the student will be able to: - Derive the first principle dynamic models of the low complexity systems such as R, L, C electrical circuits, DC electrical motors, heat transfer and fluid flow systems; - Analyse basic properties of single input - single output (SISO) linear time invariant dynamic systems based on zeros and poles nad to analytically calculate their responses to typical input signals; - Investigate stability of SISO systems based on the poles by applying the algebraic Routh-	ISW1] Assessment of factual knowledge				
o control and automation 7] can build and analyze of systems and systems in related to control systems	course, the student will be able to: - Explain structures and properties of P, PI and PID controllers and experimentally determine their parameters by applying Ziegler - Nichols methods to lower order processes; - Explain structures of state-feedback controllers, also in the case of unmeasured state variables to lower order processes; - Design by pole placement the basic controller systems meeting the performance specifications in time domain and state observers. On successful completion of this course, the student will be able to: - Derive the first principle dynamic models of the low complexity systems such as R, L, C electrical circuits, DC electrical motors, heat transfer and fluid flow systems; - Analyse basic properties of single input - single output (SISO) linear time invariant dynamic systems based on zeros and poles nad to analytically calculate their responses to typical input signals; - Investigate stability of SISO systems based on the poles by	knowledge [SU3] Assessment of ability to use knowledge gained from the				
of systems and systems in related to control systems	course, the student will be able to: - Derive the first principle dynamic models of the low complexity systems such as R, L, C electrical circuits, DC electrical motors, heat transfer and fluid flow systems; - Analyse basic properties of single input - single output (SISO) linear time invariant dynamic systems based on zeros and poles nad to analytically calculate their responses to typical input signals; - Investigate stability of SISO systems based on the poles by	use knowledge gained from the				
	Hurwitz criterion - Investigate stability of feedback systems by applying the frequency domain based Nyquist stability criterion - Assess stability robustness of feedback systems based on the open loop system phase and gain margins.					
The course is carried out as 10 three-hour laboratory sessions with the following schedule. 1. Basic operations on numbers and matrices in the MATLAB environment. 2. MATLAB - instructions, external functions and graphics. Introduction to the Control System Toolbox. 3. Introduction to the SIMULINK package in the MATLAB environment. 4. Time domain analysis for elementary automation plants. 5. Frequency analysis for elementary automation plants. 6. Static and dynamic properties of control systems - part I. 7. Static and dynamic properties of control systems - part II. 8. PID control systems - part II. 9. PID control of the DC motor.						
Fundamentals of linear time invariant and scalar differential equations, Laplace transforms, complex numbers and matrix algebra. Moreover, the basic knowlegde of signal processing and sensors and actuators. The Pre-Requisites: Information Technology, Metrology, Computer Networks and Internet Technology, Electronics (term 2), Basic of Digital Technology, Fundamentals of Control Engineering I (semester 3), Matrix Algebra, Automation Equipment.						
bject passing criteria	Passing threshold	Percentage of the final grade				
on level of laboratory tasks	50.0%	100.0%				
rature	 Dorf C.D., Bishop R. H.: Modern control systems. Eleventh Edit Pearson Prentice Hall, Upper Saddle River, NI 07458, 2008. Kaczorek T. Teoria układów regulacji automatycznej, Wydawnictwa Naukowo-Techniczne, Warszawa, 1974. Kabziński J. Teoria sterowania Projektowanie układów regulacj Wydawnictwo Naukowe PWN, Warszawa, 2021. Ogata K.: Modern Control Engineering. Fifth Edition, Pearson Prentice Hall, Upper Saddle River, NI 07458, 2010. Nise N.S. Control System Engineering. 3th edition. John Wiley Sons, 2000. Ljung L., Glad T.: Modelling of Dynamic Systems, Prentice Hall 1994. 					
	as on numbers and matrice and graphics. Introduction in the MATLAB environme cy analysis for elementary a Static and dynamic propert static and dynamic propert ystems - part II. 10. PID con entals of linear time invariar and matrix algebra. Moreo 5. The Pre-Requisites: Info gy, Electronics (term 2), Ba r 3), Matrix Algebra, Autom bject passing criteria on level of laboratory tasks	applying the algebraic Routh- Hurwitz criterion - Investigate stability of feedback systems by applying the frequency domain based Nyquist stability criterion - Assess stability robustness of feedback systems based on the open loop system phase and gain margins. see is carried out as 10 three-hour laboratory sessions with the for is on numbers and matrices in the MATLAB environment. 2. MA and graphics. Introduction to the Control System Toolbox. 3. Inti- in the MATLAB environment. 4. Time domain analysis for eleme- cy analysis for elementary automation plants. 6. Static and dyna- Static and dynamic properties of control systems - part II. 8. PID ystems - part II. 10. PID control of the DC motor. entals of linear time invariant and scalar differential equations, L2 and matrix algebra. Moreover, the basic knowlegde of signal pro- s. The Pre-Requisites: Information Technology, Metrology, Com gy, Electronics (term 2), Basic of Digital Technology, Fundamer er 3), Matrix Algebra, Automation Equipment. tbject passing criteria Passing threshold on level of laboratory tasks 1. Dorf C.D., Bishop R. H.: Moder Pearson Prentice Hall, Upper S 2. Kaczorek T. Teoria układów reg Wydawnictwa Naukowo-Techni 3. Kabziński J. Teoria sterowania Wydawnictwo Naukowe PWN, 4. Ogata K.: Modern Control Engin Prentice Hall, Upper Saddle Rii 5. Nise N.S. Control System Engin Sons, 2000.				

	Supplementary literature	 Ogata K. Designing Linear Control Systems with MATLAB. Prentice Hall, 2002. Franklin G.E., Powell J.D., Emami-Naeini E. Feedback Control of Dynamic Systems. Addison Wesley Publishing Company, 1994. Dutton K., Thompson S., Barraclough B. The Art of Control Engineering. Pearson, Prentice Hall, 1997. 				
	eResources addresses	Adresy na platformie eNauczanie:				
Example issues/ example questions/ tasks being completed	 1) Analysis of plants properties; 2) Linearity and nonlinearty; 3) Hurwitz, Routh and Nyquist stabiluity criteria; 4) PID controller design; 					
Work placement	Not applicable					