Subject card

Learning outcomes	Course outcome [K6_U01] Apply knowledge and understanding of mathematics as well as sciences and engineering disciplines underlying civil engineering to solve engineering problems and issues.	Subject outcome Student solves equations and inequalities with elementary functions. Student defines basic notions of differential calculus of one variable function. Student determines intervals of monotonicity of a given functions and its extrema. Student applies the basic rules and techniques of integration to calculate indefinite. Student lists geometrical applications of definite integrals. Student distinguishes between types of improper integrals. Student uses definite integral to solve geometrical tasks. Student recognizes the importance of skillful use of basic mathematical apparatus in terms of study in future.	Method of verification [SU1] Assessment of task fulfilment
	[K6_W01] Demonstrate knowledge and understanding of mathematics as well as sciences and engineering disciplines underlying civil engineering at a level necessary to achieve the other programme outcomes.	Student solves equations and inequalities with elementary functions. Student defines basic notions of differential calculus of one variable function. Student determines intervals of monotonicity of a given functions and its extrema. Student applies the basic rules and techniques of integration to calculate indefinite. Student lists geometrical applications of definite integrals. Student distinguishes between types of improper integrals. Student uses definite integral to solve geometrical tasks. Student recognizes the importance of skillful use of basic mathematical apparatus in terms of study in future.	[SW1] Assessment of factual knowledge
Subject contents	Functions of one variable and their properties: The absolute value function definition, solving equations and inequalities with absolute value, graphs of functions with absolute value. Power functions solving power and polynomial equations and inequalities. Rational functions solving national equations and inequalities. Exponential function properties and graphs, solving exponential equations and inequalities. Logarithmic functions properties and graphs, solving logarithmic equations and inequalities. Trigonometric and cyclometric functions properties and graphs, solving trigonometric equations and inequalities. Limits and continuity: Infinite sequences. Fundamental definitions of limit of sequence, convergence and divergence, limit theorems. Applications to solving equation. Differential calculus of functions with one variable and applications of differential calculus of functions with one variable: Definition of first derivative and differential. Rolls and Lagranges theorems. Higher derivatives and differentials. Monotonicity and local extrema. Convexity, concavity and inflexion points of a function. De IHospitals Thorem. Asymptotes. Applying differential calculus to studying the properties of functions with one variable. Inegral calculus of functions with one variable antiderivatives: The process of finding antiderivatives and integration formulas the substitution method of integration and integration by parts. Integration of rational, trigonometric and irrational functions. Definite integrals in Riemanns sense: Newton-Leibniz Thorem. Integration formulas, the substitution method of integration and integration by parts for definite integrals. Applications of integral calculus in computing areas of plane figures, lengths of arcs, volumes of solids of resolution.		
Prerequisites and co-requisites	No requirements		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Exam	50.0\%	60.0\%
	Midterm colloquium	50.0\%	40.0\%
Recommended reading	Basic literature	Praca zbiorowa pod redakcja B. W elementami matematyki wyższej, J. Dymkowska, D. Beger, Rachun Gdańsk 2016 J. Dymkowska, D. Beger, Rachun 2015 K. Jankowska, T. Jankowski, Zbió 1997	kieł, Matematyka - Podstawy z G, Gdańsk 2007 różniczkowy w zadaniach, PG, k całkowy w zadaniach, PG, Gdańsk zadań z matematyki, PG, Gdańsk

	Supplementary literature	Praca zbiorowa pod red. E. Mieloszyka, Matematyka Materiały pomocnicze do ćwiczeń, PG, Gdańsk 2004 R. Leitner, Zarys matematyki wyższej I i II, Wydawnictwo Naukowo-Techniczne, Warszawa 2001 R. Leitner, W. Matuszewski, Z. Rojek, Zadania z matematyki wyższej I i II, Wydawnictwo Naukowo-Techniczne, Warszawa 1999 M. Gewert, Z. Skoczylas, Analiza matematyczna 1 Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław 2001 M. Gewert, Z. Skoczylas, Analiza matematyczna 1 Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2001 W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach I i II, Wydawnictwo Naukowe PWN, Warszawa 1998
	eResources addresses	Adresy na platformie eNauczanie:
Example issues/ example questions/ tasks being completed	1. Find the domain and th function of f. 2. Find the derivative of y 3. Sketch the graph of the 4. Find the absolute extre 5. Calculate $4 x 2 \ln x d x$. 6. Find the area between	lues of the function $f(x)=\arcsin (3 x-2)+$. Determine the inverse 5. $x)=x-\ln x$. Identify any local extrema and points of inflection. $4 x-36 x-1$ on the interval $[1,6]$. rves $y=e x$ and $y=3-e x$ from $x=-2$ to $x=0$.
Work placement	Not applicable	

