Subject card

Learning outcomes	Course outcome	Subject outcome	Method of verification
	[K6_W01] has basic knowledge of mathematics necessary to describe the phenomena related to the processes of energy conversion and transfer; uses information technology to solve mathematical problems	Student: Can name the basic properties of elementary functions. Solves the equations and inequalities containing elementary functions. Computes the limits of sequences and functions by definition. He knows the definition of a derivative and its applications, finds monotonicity intervals of functions and its extremes. Analyzes properties of a functions based on its first and second derivative. Applies the basic techniques of integration to calculate indefinite an definite integrals Examines the convergence of improper integrals. The student defines the basic the concepts of linear algebra. Defines the basic concepts of matrix calculus. Detetmines the position of the straight lines and planes in space. Uses packages mathematical to carry out calculations and visualization of mathematical concepts.	[SW1] Assessment of factual knowledge [SW2] Assessment of knowledge contained in presentation
	[K6_K01] is aware of the need for training and self-improvement in the profession of energy and the possibility of further education; can think and act in a creative and entrepreneurial manner; can define priorities for the implementation of an individual or group task	Student can use a computer program to calculate the needed values. He knows what mathematical methods are used in programs for technical calculations.	[SK2] Assessment of progress of work
	[K6_U02] is able to apply the learned mathematical methods to the analysis and design of elements, systems and energy systems	The student joins the knowledge in mathematics with knowledge from others fields.	[SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools

Subject contents

Elements of linear algebra. Matrices and determinants. Operations on matrices. Inverse of a matrix. System of linear equations.

Elementary functions and their properties: polynomial, rational, power, exponential, logarithmic, trigonometric, cyclometric.

Sequences. Definition. Monotonicity and boundedness. Limits

Limits and continuity of functions.

Differential calculus and its applications.

Integral calculus and its applications.

Complex numbers

Prerequisites

and co-requisites

Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Tests during the semeter	0.0%	50.0%
	Exam	50.0%	50.0%

Recommended reading	Basic literature	1. Jurkiewicz T., Skoczylas Z., Algebra liniowa 1, GiS, Wrocław 2006 2. Leja F., Rachunek różniczkowy i całkowy, PWN, Warszawa 1965 3. Mostowski A., Stark M., Elementy algebry wyższej, PWN,Warszawa 1968 4. Jankowska K., Jankowski T., Zbiór zadań z matematyki,Wydawnictwo PG, Gdańsk 1998 5. Wikieł B., Podstawy z elementami matematyki wyższej,Wydawnictwo
	Supplementary literature	1. Fichtencholtz G. M., Rachunek różniczkowy i całkowy, t. 1-2,PWN, Warszawa 1962 2. Jankowska K., Jankowski T., Zbiór zadań z matematyk wyższej,Wydawnictwo PG, Gdańsk 2004 3. Krysicki W., Włodarski W., Analiza matematyczna w zadaniach, cz.1, PWN, Warszawa 1994 4. Krysicki W., Włodarski W., Analiza matematyczna w zadaniach, cz.2, PWN, Warszawa 1994
	eResources addresses	Adresy na platformie eNauczanie:
Example issues/ example questions/ tasks being completed	1. Solve a system of equ jeżeli A=[5 6; 7 8], B=[-1 sequence has limit. 6. Compute limits of func formulas). 9. Examine the graph, approximate value rational function, trigonom (find area or center of ma	ind the inverse matrix. 3 . Solve the matrix equation eg. np. $3 X-A X=B$ Compute limits of sequecncies. 5, Check by definition that a given nd asymptotes of a given function. 8. Calculate derivatives (using of monotonicity and extremes of a function. 10 Find tangent line to the (14) 11. optimalizating exercise 12. Calculate antiderivative (eg of a).13. Calculate the improper integral. 14. Calculate definiteve integral h).
Work placement	Not applicable	

