Subject card | Subject name and code | Computer Aided Design of the Hull, PG_00060542 | | | | | | | | |---|---|--|---|-------------------------------------|--------|---|---------|-----| | Field of study | Design and Construction of Yachts, Naval Architecture and Offshore Structures | | | | | | | | | Date of commencement of studies | October 2024 | | Academic year of realisation of subject | | | 2025/2026 | | | | Education level | first-cycle studies | | Subject group | | | Optional subject group Subject group related to scientific research in the field of study | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | Year of study | 2 | | Language of instruction | | | Polish | | | | Semester of study | 4 | | ECTS credits | | | 4.0 | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | Conducting unit | Institute of Ocean Engineering and Ship Technology -> Faculty of Mechanical Engineering and Ship Technology | | | | | | | | | Name and surname | Subject supervisor | | dr inż. Cezary Żrodowski | | | | | | | of lecturer (lecturers) | Teachers | - | | 1 | _ | | 1 | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | Number of study hours | 15.0 | 0.0 | 0.0 | 30.0 | | 0.0 | 45 | | | E-learning hours inclu | ided: 0.0 | • | | | | | | | Learning activity and number of study hours | Learning activity | Participation in didactic classes included in study plan | | Participation in consultation hours | | Self-study | | SUM | | | Number of study hours | 45 | | 5.0 | | 50.0 | | 100 | | Subject objectives | Getting to know the characteristics of the available CADCAM/CAE computer-aided design software for the maritime industry and mastering the skills of its use on selected examples of hull design. | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | [K6_K03] is aware of the impact of non-technical aspects on the engineer's work and the impact of engineering activities on the natural environment | | The student is able to use functionalities of CAD tools, supporting sustainable design | | | [SK2] Assessment of progress of work | | | | | the possibilities of their use in | | 141 / 5,000 Translation results Translation result The student correctly selects CAD tools for various design problems, taking into account the advantages and disadvantages of mesh and parametric geometry. | | | [SW3] Assessment of knowledge contained in written work and projects | | | | | [K6_U02] can work individually and in a team, communicate through various techniques in professional environment and also record, analyse, and present the results of work, can estimate the time needed to complete a given task | | work techniques built into modern | | | [SU4] Assessment of ability to
use methods and tools
[SU1] Assessment of task
fulfilment | | | Data wydruku: 30.06.2024 22:03 Strona 1 z 3 | Subject contents | CAD/CAM/CAE software for maritime industry, functionality, requirements, comparison of available programs. | | | | | | | |---------------------------------|---|---|-------------------------------|--|--|--|--| | | Modeling of parametric hull shape and propeller Modeling of hull compartmentation | | | | | | | | | | | | | | | | | | 4. Calculation of ship hydrostatics and stability 5. Hydrodynamic resistance simulation (CFD) 6. Strength simulations (MES) 7. Optimization of parametric shape with MDO software 8. Generating od 2D documentation on the basis of 3D model. | Prerequisites and co-requisites | Basic computer skills. | | | | | | | | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | | and criteria | Realsation of ongoing exercises | 50.0% | 70.0% | | | | | | | Presentation of selected subject | 50.0% | 30.0% | | | | | | Recommended reading | Basic literature | Carl Machover: "C4" | | | | | | | | | User's manuals for selected programs: | | | | | | | | | 1. Inventor | | | | | | | | | 2. SolidWorks | | | | | | | | | 3. Siemens NX | | | | | | | | | 4. AVEVA Marine | | | | | | | | | 5. Maat Hydro | | | | | | | | | 6. Star-CCM+ | | | | | | | | | 7. PolyCAD | | | | | | | | | 8. Delft Ship | | | | | | | | | 9. NAPA | | | | | | | | | 10. FORAN | | | | | | | | | 11. Maxsurf | | | | | | | | Supplementary literature | e-learning course o eNauczanie platform | | | | | | | | eResources addresses Adresy na platformie eNauczanie: | | | | | | | Data wydruku: 30.06.2024 22:03 Strona 2 z 3 | Example issues/
example questions/
tasks being completed | Parametric model of hull form. | |--|--| | | 2. Associative model of hull assembly. | | | 3. CFD simulation of propeller. | | | 4. FEA simulation of simple structure. | | Work placement | Not applicable | Data wydruku: 30.06.2024 22:03 Strona 3 z 3