Subject card | Subject name and code | Shipbuilding drawings, PG_00060576 | | | | | | | | | |---|---|--|--|-------------------------------------|--------|---|---------|-----|--| | Field of study | Design and Construction of Yachts | | | | | | | | | | Date of commencement of studies | October 2024 | | Academic year of realisation of subject | | | 2024/2025 | | | | | Education level | first-cycle studies | | Subject group | | | Obligatory subject group in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | | Semester of study | 2 | | ECTS credits | | | 3.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Institute of Ocean Engineering and Ship Technology -> Faculty of Mechanical Engineering and Ship Technology | | | | | | | | | | Name and surname | Subject supervisor | | dr inż. Cezary Żrodowski | | | | | | | | of lecturer (lecturers) | Teachers | Teachers | | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | | Number of study hours | 15.0 | 0.0 | 0.0 | 30.0 | | 0.0 | 45 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in didactic classes included in study plan | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 45 | | 5.0 | | 25.0 | | 75 | | | Subject objectives | Consolidation of the principles of general technical drawing Introduction to the specificity of ship/yacht drawing Introduction to modern methods of creating ship documentation (3D) | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | [K6_U02] can work individually and in a team, communicate through various techniques in professional environment and also record, analyse, and present the results of work, can estimate the time needed to complete a given task | | The student is able to draw an element of the ship's hull based on a 3D model, recreate a 3D model based on a drawing and assess the correctness of both operations, working in tandem with another student. | | | [SU3] Assessment of ability to use knowledge gained from the subject [SU2] Assessment of ability to analyse information [SU1] Assessment of task fulfilment | | | | | | [K6_W04] has knowledge in the field of computer science, electronics, electrical engineering, automation and control, information technology, computer graphics, useful for understanding the possibilities of their use in ocean engineering | | The student correctly selects the methods of solving geometric tasks and the software supporting them. | | | [SW3] Assessment of knowledge contained in written work and projects | | | | | | [K6_W01] has knowledge of mathematics, including algebra, elements of logic, geometry, mathematical analysis, and probabilistic necessary to describe and analyse the operation of yachts and devices installed on them | | The student demonstrates the knowledge of geometry at a level that allows for the correct parameterization of 2D sketches and 3D models of ship's hull elements. | | | [SW3] Assessment of knowledge contained in written work and projects | | | | Data wydruku: 30.06.2024 21:33 Strona 1 z 2 | Prerequisites and co-requisites Assessment methods and criteria Recommended reading Basic literature Dobrzański T.: Rysunek techniczny maszynowy, WNT 2014 Romanowicz P.: Rysunek techniczny maszynowy z elementami CAD, PWN 2021 Domański Z.: Rysunek techniczny maszynowy i okrętowy, Wydawnictwo Morskie, 1982 Skupnik D., Markiewicz R.: Rysunek techniczny maszynowy i komputerowy zapis konstrukcji, Kram 2013 Supplementary literature eResources addresses Adresy na platformie eNauczanie: Example issues/ example questions/ tasks being completed Not applicable Subject passing criteria Passing threshold Percentage of the final grade 100.0% Pobrzański T.: Rysunek techniczny maszynowy z elementami CAD, PWN 2021 Administracy maszynowy i okrętowy, Wydawnictwo Morskie, 1982 Skupnik D., Markiewicz R.: Rysunek techniczny maszynowy i komputerowy zapis konstrukcji, Kram 2013 Supplementary literature e-leatrning course on eNauczanie platform eResources addresses Adresy na platformie eNauczanie: 1. Draw projections necessary to fully recreate a given 3D model of selected ship elements. 2. Build a 3D model based on delivered 2D drawings, identify gaps/ambiguities and convention limitations. 3. Draw a parametric sketch that is consistent when you change the specified parameters within a specified range of values. Work placement Not applicable | Subject contents | Repetition - the main principles of general technical drawing, natural and conventional drawing. Ship drawing - deviations from the rules of relation to general engineering Theoretical lines, elevation table, convention, quality assessment tools. Master plan, convention, level of detail. Sheathing extension, convention, purpose. Sections (structure drawings) Technological documentation. Documentation of composite and wooden hulls. Sketches, relations, and parameters. Tolerances. Surfaces, continuity classes, relations and parameters. Freeform and d-sub surfaces. 3D models and automatic generation of associative drawings. Manual reconstruction of 3D models from 2D projections. Elements of machine drawing, installation, architectural, used in shipbuilding. Automatic editing of drawing/model, geometry optimization. | | | | | | |--|---------------------|--|-------------------|---|--|--|--| | Recommended reading Basic literature Dobrzański T.: Rysunek techniczny maszynowy, WNT 2014 Romanowicz P.: Rysunek techniczny maszynowy z elementami CAD, PWN 2021 Domański Z.: Rysunek techniczny maszynowy i okrętowy, Wydawnictwo Morskie, 1982 Skupnik D., Markiewicz R.: Rysunek techniczny maszynowy i komputerowy zapis konstrukcji, Kram 2013 Supplementary literature eResources addresses Adresy na platformie eNauczanie: 1. Draw projections necessary to fully recreate a given 3D model of selected ship elements. 2. Build a 3D model based on delivered 2D drawings, identify gaps/ambiguities and convention limitations. 3. Draw a parametric sketch that is consistent when you change the specified parameters within a specified range of values. | • | | | | | | | | Recommended reading Basic literature Dobrzański T.: Rysunek techniczny maszynowy, WNT 2014 Romanowicz P.: Rysunek techniczny maszynowy z elementami CAD, PWN 2021 Domański Z.: Rysunek techniczny maszynowy i okrętowy, Wydawnictwo Morskie, 1982 Skupnik D., Markiewicz R.: Rysunek techniczny maszynowy i komputerowy zapis konstrukcji, Kram 2013 Supplementary literature e-leatrning course on eNauczanie platform eResources addresses Adresy na platformie eNauczanie: 1. Draw projections necessary to fully recreate a given 3D model of selected ship elements. 2. Build a 3D model based on delivered 2D drawings, identify gaps/ambiguities and convention limitations. 3. Draw a parametric sketch that is consistent when you change the specified parameters within a specified range of values. | | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | Romanowicz P.: Rysunek techniczny maszynowy z elementami CAD, PWN 2021 Domański Z.: Rysunek techniczny maszynowy i okrętowy, Wydawnictwo Morskie, 1982 Skupnik D., Markiewicz R.: Rysunek techniczny maszynowy i komputerowy zapis konstrukcji, Kram 2013 Supplementary literature e-leatrning course on eNauczanie platform eResources addresses Adresy na platformie eNauczanie: Example issues/ example questions/ tasks being completed 1. Draw projections necessary to fully recreate a given 3D model of selected ship elements. 2. Build a 3D model based on delivered 2D drawings, identify gaps/ambiguities and convention limitations. 3. Draw a parametric sketch that is consistent when you change the specified parameters within a specified range of values. | and criteria | Completion of drawing tasks | 60.0% | 100.0% | | | | | example questions/ tasks being completed 2. Build a 3D model based on delivered 2D drawings, identify gaps/ambiguities and convention limitations. 3. Draw a parametric sketch that is consistent when you change the specified parameters within a specified range of values. | Recommended reading | Basic literature Dobrzański T.: Rysunek techniczny maszynowy, WNT 2014 Romanowicz P.: Rysunek techniczny maszynowy z elementami (PWN 2021 Domański Z.: Rysunek techniczny maszynowy i okrętowy, Wydawnictwo Morskie, 1982 Skupnik D., Markiewicz R.: Rysunek techniczny maszynowy i komputerowy zapis konstrukcji, Kram 2013 Supplementary literature e-leatrning course on eNauczanie platform | | ny maszynowy z elementami CAD,
maszynowy i okrętowy,
k techniczny maszynowy i
m 2013 | | | | | Work placement Not applicable | example questions/ | Build a 3D model based on delivered 2D drawings, identify gaps/ambiguities and convention limitations. Draw a parametric sketch that is consistent when you change the specified parameters within a | | | | | | | | Work placement | Not applicable | | | | | | Data wydruku: 30.06.2024 21:33 Strona 2 z 2