Subject card

Subject name and code	Mathematical Analysis II, PG_00047364						
Field of study	Automatic Control, Cybernetics and Robotics						
Date of commencement of studies	October 2024		Academic year of realisation of subject			2024/2025	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study Subject group related to scientific research in the field of study	
Mode of study	Full-time studies		Mode of delivery			blended-learning	
Year of study	1		Language of instruction			Polish	
Semester of study	2		ECTS credits			5.0	
Learning profile	general academic profile		Assessment form			assessment	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Barbara Wikieł				
	Teachers		mgr Anetta Brękiewicz-Sieg dr Robert Fidytek mgr inż. Wojciech Dąbrowski dr Barbara Wikieł				
Lesson types and methods of instruction	$\begin{array}{\|l\|} \hline \text { Lesson type } \\ \hline \begin{array}{l} \text { Number of study } \\ \text { hours } \end{array} \\ \hline \end{array}$	Lecture	$\begin{array}{\|l\|} \hline \text { Tutorial } \\ \hline 30.0 \\ \hline \end{array}$	Laboratory	Project	Seminar	SUM
		30.0		0.0	0.0	0.0	60
	E-learning hours included: 2.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	60		5.0		60.0	125
Subject objectives	Students obtain competence in the range of using methods of full range mathematical analysis and knowledge how to solve simple problems that can be found in the field of engineering.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	[K6_W01] knows and understands, to an advanced extent, mathematics necessary to formulate and solve simple issues related to the field of study		Student defines basic notions of some elements of field theory, line and surface integrals, infinite, function and trigonometric Fourier series, differential and partial differential equations.			[SW1] Assessment of factual knowledge	
	[K6_U01] can apply mathematical knowledge to formulate and solve complex and non-typical problems related to the field of study and perform tasks, in an innovative way, in not entirely predictable conditions, by:n- appropriate selection of sources and information obtained from them, assessment, critical analysis and synthesis of this information,nselection and application of appropriate methods and toolsn		Student computes some basicelements of field theory. Studentcalculates line and surfaceintegrals. Student studiescanvergence of infinite andfunction series. Studentdetermines general and particularsolutions of some types of the firstorder differential equations and nthorder linear differentialequations with constantcoefficients.			[SU4] Assessment of ability to use methods and tools	
Subject contents	Line integrals of scalar field. Line integrals of vector field. Path independence. Greens Theorem. Surface integrals of scalar fields. Surface integrals of vector fields. Stokes Theorem. GaussOstrogradsky Theorem. Applications of line and surface integrals. Some elements of field theory. Orthogonal coordinate systems. Vector and integro-differential operations in orthogonal coordinate systems. Operational calculus. Differential operators: gradient, divergence, rotation, Laplacian. Vector and scalar fields. First order differential equations. Variables separable, linear, Bernoulli, exact differential equations. Higher order linear differential equations with constant coefficients. Infinite series. Convergence tests. Alternating series test. Absolute and conditional convergence. Function and power series. Radius and interval of convergence of a power series. Taylor and Maclaurin series. Trigonometric Fourier series.						

Prerequisites and co-requisites	Knowledge of subject: "Basic Mathematics". Knowledge of subject: "Calculus". Knowledge of subject: "Linear Algebra".		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Final colloquium	50.0\%	60.0\%
	Activity	0.0\%	10.0\%
	Tests	50.0\%	30.0\%
Recommended reading	Basic literature	1. Gewert M., Skoczylas Z., twierdzenia, wzory", Oficyna 2. Gewert M., Skoczylas Z., zadania", Oficyna Wydawni 3. Gewert M., Skoczylas Z. egzaminy", Oficyna Wydaw 4. Gewert M., Skoczylas Z., przykłady, zadania", Oficyna 5. Gewert M., Skoczylas Z., przykłady, zadania", Oficyna 6. Jankowska K., Jankowsk Wydawnictwo Politechniki	matematyczna 2. Definicje, nicza GiS matematyczna 2. Przykłady i matematyczna 2. Kolokwia i S nty analizy wektorowej. Teoria, vnicza GiS ania różniczkowe zwyczajne. Teoria, wnicza GiS dania z matematyki wyższej", j
	Supplementary literature	1. McQuarrie D., "Matema 1-3, Wydawnictwo Naukow 2. Stankiewicz W., Wojtow uczelni technicznych", Wy	przyrodników i inżynierów", tomy adania z matematyki dla wyższych Naukowe PWN
	eResources addresses	Adresy na platformie eNauc	
Example issues/ example questions/ tasks being completed	1. Find the gradient of the scalar field $F(x, y, z)=x e^{y z}$.		
	2. Check if the vector field $\mathrm{W}=$ 3. Check whether the given se 4. Find a particular solution of $y(1)=10$. 5. Applying Laplace transform initial conditions $y(0)=0$ i $y^{\prime}(0)$	$\left.+z^{2}, x^{2}, 2 x z+\cos z\right]$ is pote with general term $a_{n}=\left(n!3^{n}\right)$ fferential equation $(x+1) y^{\prime}+$ solution of the differential eq	is convergent. satisfying the initial condition $y^{\prime \prime}+2 y^{\prime}=2 e^{-2 x}$ satisfying the given
Work placement	Not applicable		

