Subject card

Subject name and code	Linear Algebra, PG_00047356						
Field of study	Electronics and Telecommunications						
Date of commencement of studies	October 2024		Academic year of realisation of subject			2024/2025	
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study Subject group related to scientific research in the field of study	
Mode of study	Full-time studies		Mode of delivery			at the university	
Year of study	1		Language of instruction			Polish	
Semester of study	1		ECTS credits			3.0	
Learning profile	general academic profile		Assessment form			assessment	
Conducting unit	Mathematics Center -> Vice-Rector for Education						
Name and surname of lecturer (lecturers)	Subject supervisor		dr Robert Fidytek				
	Teachers		dr Robert Fidytek mgr Dorota Grott mgr Anetta Brękiewicz-Sieg				
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Project	Seminar	SUM
	Number of study hours	15.0	15.0	0.0	0.0	0.0	30
	E-learning hours included: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study	SUM
	Number of study hours	30		3.0		42.0	75
Subject objectives	Students obtain competence in the range of using methods of linear algebra and knowledge how to solve simple problems that can be found in the field of engineering.						
Learning outcomes	Course outcome		Subject outcome			Method of verification	
	[K6_U01] can apply mathematical knowledge to formulate and solve complex and non-typical problems related to the field of study and perform tasks, in an innovative way, in not entirely predictable conditions, by:n- appropriate selection of sources and information obtained from them, assessment, critical analysis and synthesis of this information, n selection and application of appropriate methods and toolsn		Student uses basic notions and formulas of matrix and vector calculus. Student analyses a given problem from analitic geometry. Student uses complex numbers and studies complex functions.			[SU4] Assessment of ability to use methods and tools	
	[K6_W01] knows and understands, to an advanced extent, mathematics necessary to formulate and solve simple issues related to the field of study		Student defines the basic concepts of linear algebra and analitic geometry necessary to solve simple engineering problems in the domain of education.			[SW1] Assessment of factual knowledge	
Subject contents	Calculus of vectors. Basis vectors. Matrices. Calculus of matrixes. Determinants and their properties. Inverse matrix. Rank of a matrix. Eigenvalues and eigenvectors of a square matrix. Systems of linear equations. Line and plane in space. Complex numbers. Operations on complex numbers.						
Prerequisites and co-requisites							
Assessment methods and criteria	Subject passing criteria		Passing threshold			Percentage of the final grade	
	Activity		0.0\%			15.0\%	
	Final test		50.0\%			85.0\%	

Recommended reading	Basic literature	1. Jurlewicz T., Skoczylas Z., Algebra i geometria analityczna. Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS 2. Jurlewicz T., Skoczylas Z., Algebra i geometria analityczna. Przykłady i zadania, Oficyna Wydawnicza GiS 3. Jurlewicz T., Skoczylas Z., Algebra i geometria analityczna. Kolokwia i egzaminy, Oficyna Wydawnicza GiS
	Supplementary literature	1. Jankowska K., Jankowski T., Zbiór zadań z matematyki, Wydawnictwo Politechniki Gdańskiej 2. Kajetanowicz P., Wierzejewski J., ,,Algebra z geometria analityczną", Wydawnictwo Naukowe PWN
	eResources addresses	Adresy na platformie eNauczanie:
Example issues/ example questions/ tasks being completed	1. Solve the matrix equation 2. Using the Cramer form $5 y-2 x+z=1,-5 x+4 y+2 z=1$. 3. Find the roots of the eq 4. Finf the general equatio $2(x-1)=y+2=-3 z$. 5. Find the Laplace transf	where A and B are given matrices. unknown x from the system of equations: $2 x+y+3 z+2 t=3,3 x+z=1$, $16 i=0$. Give their algebraic form. ane passing through the point $A(-1,2,4)$ and perpendicular to the line given function $f(t)=1 / 2(\sin t-t \cos t)$.
Work placement	Not applicable	

