Subject card

Learning outcomes	Course outcome	Subject outcome	Method of verification
	[K6_U01] has the ability to selfeducation, can obtain information from literature, databases and other sources, uses information technology, Internet resources; can integrate the obtained information, make their interpretation, as well as draw conclusions and formulate and justify opinions	Student recognizes the importance of self-expanding knowledge and takes the challenge of working with a group to solve a problem. Student combines knowledge of mathematics with knowledge from other fields. Student recognizes the importance of skillful use of basic mathematical apparatus in terms of study in the future. Student recognizes the importance of self-expanding knowledge. Student uses methods of mathematical description of phenomena in the physical / mechanical. Student understands the need of lifelong learning. Student is able to inspire others and organize their learning process. Student is able to process the acquired information, analyze and interpret it, draw conclusions and reason opinions.	[SU1] Assessment of task fulfilment
	[K6_W01] has knowledge in the field of mathematics, including: linear algebra, mathematical analysis and elements of mathematical statistics, probability theory, applications of mathematics, including mathematical methods and numerical methods, necessary for: 1) description and analysis of hydrological phenomena; 2) description and analysis of meteorological phenomena; 3) solving project tasks of the sanitary industry;	Student defines basic notions of matrix calculus. Student calculates determinants of any degree . Student describes methods of solving systems of linear equations Student analyses a tasks from analitycal geometry. Student solves equations and inequalities with elementary functions. Student determines intervals of monotonicity of a given functions and its extrema. Student geometrically interprets the results of an examinations of a graph of a functions using concept of limit, continuity and derivatives of functions. Student applies the basic rules and techniques of integration to calculate indefinite integrals	[SW1] Assessment of factual knowledge
Subject contents	Matrices (definition, types of matrices, matrix operations). Determinants and their properties. Rank of a matrix. Inverse of a square non-singular matrix. Systems of linear equations. Cramers theorem. KroneckerCapelly theorem. Gauss-Jordan elimination. Basic vectors definitions and properties. Dot product, cross product, their properties and its applications. The triple scalar product and applications. Equations of lines and planes in 3-space. The distance from a point to a plan. Angles between planes and lines. Functions of one variable and their properties: The absolute value function definition, solving equations and inequalities with absolute value, graphs of functions with absolute value. Power functions solving power and polynomial equations and inequalities. Rational functions solving national equations and inequalities. Exponential function properties and graphs, solving exponential equations and inequalities. Logarithmic functions properties and graphs, solving logarithmic equations and inequalities. Trigonometric and cyclometric functions properties and graphs, solving trigonometric equations and inequalities. Limits and continuity: Infinite sequences. Fundamental definitions of limit of sequence, convergence and divergence, limit theorems. Applications to solving equation. Differential calculus of functions with one variable and applications of differential calculus of functions with one variable: Definition of first derivative and differential. Rolls and Lagranges theorems. Higher derivatives and differentials. Monotonicity and local extrema. Convexity, concavity and inflexion points of a function. De IHospitals Thorem. Asymptotes. Applying differential calculus to studying the properties of functions with one variable. Inegral calculus of functions with one variable antiderivatives: The process of finding antiderivatives and integration formulas the substitution method of integration and integration by parts. Integration of rational, trigonometric and irrational functions.		
Prerequisites and co-requisites			
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Midterm colloquium	50.0\%	40.0\%
	Written exam	50.0\%	60.0\%
Recommended reading	Basic literature	1. Praca zbiorowa pod redakcja B. Wikieł, Matematyka - Podstawy z elementami matematyki wyższej, PG, Gdańsk 2007. 2. K. Jankowska, T. Jankowski, Zbiór zadań z matematyki, PG, Gdańsk 1997. 3. Praca zbiorowa pod red. E. Mieloszyka, Matematyka Materiały pomocnicze do ćwiczeń, PG, Gdańsk 2004. 4. R. Leitner, Zarys matematyki wyższej I i II, Wydawnictwo Naukowo-Techniczne, Warszawa 2001. 5. R. Leitner, W. Matuszewski, Z. Rojek, Zadania z matematyki wyższej I i II, Wydawnictwo Naukowo-Techniczne, Warszawa 1999. 6. M. Gewert, Z. Skoczylas, Analiza matematyczna 1 Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław 2001.	

	Supplementary literature	7. M. Gewert, Z. Skoczylas, Analiza matematyczna 1 Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2001. 8. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach I i II, Wydawnictwo Naukowe PWN, Warszawa 1998. 9. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1 Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wroctaw 2002. 10. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1 Przykłady i zadania, Oficyna Wydawnicza GiS, Wrocław 2002. 11. E. Mieloszyk, Macierze, wyznaczniki i układy równań, PG, Gdańsk 2003.
	eResources addresses	Adresy na platformie eNauczanie:
Example issues/ example questions/ tasks being completed	1. Find the domain and the set of values of the function $f(x)=\arcsin (3 x-2)+$. Determine the inverse function of f . 2. Find the derivative of $y=4 x(3 \times 2+5) 5$. 3. Sketch the graph of the function $f(x)=x$ - Inx. Identify any local extrema and points of inflection. 4. Find the absolute extrema of $f(x)=4 x-36 x-1$ on the interval $[1,6]$. 5. Calculate $4 \mathrm{x}-1 \ln \mathrm{dx}$. 6. Find $A-1$ if the matrix A is a 2×2 matrix of the elements aij $=3 i-j$. 7. Find the distance between lines $1:(x-9) / 4=(y+2) /(-3)=z$ and $k: x /(-2)=(y+7) / 9=(z-2) / 2$.	
Work placement	Not applicable	

