Subject card

Recommended reading	Basic literature	Martin Anthony, Norman Biggs, Mathematics for Economics and Finance Methods and Modelling, Cambridge University Press ISBN: 0521559138 Ken Binmore and Joan Davies , CALCULUS: Concepts and methods, Cambridge University Press ISBN: 0521775418 T. Jankowski, Linear Algebra, Wydawnictwo Politechniki Gdańskiej, Gdańsk 2001, ISBN 83-88007-87-4
	Supplementary literature	Hwei Hsu, Schaum's Outline of Probability, Random Variables, and Random Processes, Second Edition, McGraw-Hill; 2 edition ISBN: 978-0071632898
	eResources addresses	Adresy na platformie eNauczanie:
Example issues/ example questions/ tasks being completed	- Prove convergence of the series and find the sum. Is the given series absolutely convergent, conditionally convergent or divergent? Compute the improper integral or prove its divergence Find the area of the figure bounded by $y=e^{x}, y=e^{2 x}, x=1$. Find the integral $x^{3} \ln x d x$ Find the points of extremum of the function $f(x, y)=x^{2}+x y+y^{2}+x-y+1$ Find the greatest and the least value of the function $f(x, y)=x^{2}-y^{2}$ within the circle $x^{2}+y^{2} 4$. To find stationary points on the boundary of the domain use the method of relative extrema. Find the area of the indicated domain using double integration. The domain is bounded by the parabolas $y=x, y=2 x$ and straight line $x=4$. Given the probability function of the random variable $X: p(-5)=0.1, p(-2)=0.2, p(0)=0.1, p(1)=0.2, p(3)=c$, $p(8)=0.1$ find: 1. the graph of the probability function 2. the distribution function and its graph $(F(x)=P(X$ 3. probabilities $P(X=1), P(X=2), P(X<3), P(X<2), P(X \quad 0), P(-2 \quad X<1)$, 4. mean value 5. variance and standard deviation Find: mean value, variance, the distribution function and $P(X>1)$ if the density function of the random variable X is of the form $f(x)=3 / 4\left(2 x-x_{2}\right)$ if 0×2 and $f(x)=0$ otherwise. A consumer buys apples and bananas and has utility function $u\left(x_{1}, x_{2}\right)=x_{1} x_{2}{ }^{2}$, where x_{1} is the number of apples and x_{2} the number of bananas. Suppose that he has $\$ 1.80$ to spend on the bundle of apples and bananas, and that apples cost $\$ 0.12$ each, bananas cost $\$ 0.20$ each. Write down the budget equations and the Lagrangean for the problem of finding the optimal bundle. What is the optimal bundle?	
Work placement	Not applicable	

