Subject card

Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Midterm colloquium	50.0\%	50.0\%
	Final exam	50.0\%	50.0\%
Recommended reading	Basic literature	Martin Anthony, Norman B Finance Methods and Mode 0521559138 Hoffmann Laurence D., Br economics and the social Company, 1986, ISBN 978 T. Jankowski, Linear Algeb Gdańsk 2001, ISBN 83-88	hematics for Economics and ambridge University Press ISBN: rald, Calculus for business, ciences,New York, McGraw-Hill 2737 awnictwo Politechniki Gdańskiej,
	Supplementary literature		
	eResources addresses	Adresy na platformie eNau	
Example issues/ example questions/ tasks being completed	1. Suppose that an investor invests her money in three different assets and that three possible states can occur. Show that if the return matrix is R then Y and Z are arbitrage portfolios. Which of the two would you choose, given the choice? 2. The production processes for three goods $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ are interlinked. To produce one dollar's worth of C_{1} requires the input of $\$ 0.2$ worth of $\mathrm{C}_{1}, \$ 0.2$ of C_{2} and $\$ 0.1$ of C_{3}. To produce one dollar's worth of C_{2} requires $\$ 0.1$ worth of $\mathrm{C}_{1}, \$ 0.2$ worth of C_{2} and $\$ 0.1$ worth of C_{3}, and to produce one dollar's worth of C_{3} requires $\$ 0.1$ worth of each of $\mathrm{C}_{1}, \mathrm{C}_{2}$ and $\$ 0.2$ worth of C_{3}. Suppose that in a given period, there is an external demand for 200 dollars' worth of $\mathrm{C}_{1}, 400$ of C_{2} and 300 of C_{3}. We wish to know the production levels x_{1}, x_{2}, x_{3} of C_{1}, C_{2}, C_{3} required to satisfy all demands in the given period. 3. A firm manufactures 3 different types of some good ' A ', ' B ' and ' C '. The main ingredients in each are ' a ', ' b ' and ' c '. To produce 100 units of ' A ' requires 1 units of ' a ', 3 units of ' b ' and 5 units of ' c '. To produce 100 units of ' B ' requires 4 units of ' a ', 3 units of ' b ' and 2 units of ' c '. To produce 100 units of ' C ' requires 2 units of ' a ', 2 units of ' 'b' and 2 units of 'c'. The firm has supplies of 450 units of ' a ', 360 of ' b ' and 270 of 'c' each week (and as much as it wants of the other ingredients). How does the number of 'A' produced relate to the production level of the other two goods if the firm uses up its supply of 'a', 'b' and 'c'? Find the maximum possible weekly production of ' C '. 4. Find the time-independent solution of the recurrent equation $4 \mathrm{y} \mathrm{t}=\mathrm{y}(\mathrm{t}-1)+9,(\mathrm{t}=1,2,3, \ldots$. . Find the solution when $\mathrm{yo}=6$, and describe its behaviour as t tends to infinity. 5. Imagine you have $\$ 200000$ to invest, at a constant rate of 5%, and that you want to withdraw a fixed amount I at the end of each year for next twenty years. What is the maximum possible value of I for which this is possible? Answer the same question if withdrawals of I are to be made at the beginning of each of the next twenty years (including the present year). 6. Find the local extrema of the given function $f(x)=x^{2} e^{-x}$ 7. The function g is given by $g(x)=x^{3}-6 x^{2}+12 x-1$. Show that g has only one critical point. Determine whether this point is a maximum, a minimum, or an inflection point. 8. Find asymptotes of the given function $y=x+2+1 /(x-2)$. 9. Marginal cost function is defined to be the the derivative of the cost function. A manufacturers cost function is $\mathrm{C}(\mathrm{q})=1000+20 \mathrm{q}+\mathrm{q}(1+\mathrm{q})^{0.5}$. Find the marginal cost function.		
Work placement	Not applicable		

