Subject card

Subject contents	Matrices (definition, types of matrices, matrix operations). Determinants and their properties. Rank of a matrix. Inverse of a square non-singular matrix. Systems of linear equations. Cramers theorem. KroneckerCapelly theorem. Gauss-Jordan elimination. Basic vectors definitions and properties. Dot product, cross product, their properties and its applications. The triple scalar product and applications. Equations of lines and planes in 3 -space. The distance from a point to a plan. Angles between planes and lines. Functions of one variable and their properties: The absolute value function definition, solving equations and inequalities with absolute value, graphs of functions with absolute value. Power functions solving power and polynomial equations and inequalities. Rational functions solving national equations and inequalities. Exponential function properties and graphs, solving exponential equations and inequalities. Logarithmic functions properties and graphs, solving logarithmic equations and inequalities. Trigonometric and cyclometric functions properties and graphs, solving trigonometric equations and inequalities. Limits and continuity: Infinite sequences. Fundamental definitions of limit of sequence, convergence and divergence, limit theorems. Applications to solving equation. Differential calculus of functions with one variable and applications of differential calculus of functions with one variable: Definition of first derivative and differential. Rolls and Lagranges theorems. Higher derivatives and differentials. Monotonicity and local extrema. Convexity, concavity and inflexion points of a function. De IHospitals Thorem. Asymptotes. Applying differential calculus to studying the properties of functions with one variable. Inegral calculus of functions with one variable antiderivatives: The process of finding antiderivatives and integration formulas the substitution method of integration and integration by parts. Integration of rational, trigonometric and irrational functions.		
Prerequisites and co-requisites			
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	Midterm colloquium	50.0\%	40.0\%
	Written exam	50.0\%	60.0\%
Recommended reading	Basic literature	1. Praca zbiorowa pod redakcja B. Wikieł, Matematyka - Podstawy z elementami matematyki wyższej, PG, Gdańsk 2007. 2. K. Jankowska, T. Jankowski, Zbiór zadań z matematyki, PG, Gdańsk 1997. 3. Praca zbiorowa pod red. E. Mieloszyka, Matematyka Materiały pomocnicze do ćwiczeń, PG, Gdańsk 2004. 4. R. Leitner, Zarys matematyki wyższej I i II, Wydawnictwo Naukowo-Techniczne, Warszawa 2001. 5. R. Leitner, W. Matuszewski, Z. Rojek, Zadania z matematyki wyższej I i II, Wydawnictwo Naukowo-Techniczne, Warszawa 1999. 6. M. Gewert, Z. Skoczylas, Analiza matematyczna 1 Definicje, twierdzenia, wzory, Oficyna Wydawnicza GiS, Wrocław 2001.	
	Supplementary literature	7. M. Gewert, Z. Skoczylas, zadania, Oficyna Wydawnic Włodarski, Analiza matema Naukowe PWN, Warszawa liniowa 1 Definicje, twierdze Wroctaw 2002. 10. T. Jurlew Przykłady i zadania, Oficyn Mieloszyk, Macierze, wyzna	matematyczna 1 Przykłady i Wrocław 2001. 8. W. Krysicki, L. w zadaniach I i II, Wydawnictwo T. Jurlewicz, Z. Skoczylas, Algebra ory, Oficyna Wydawnicza GiS, Skoczylas, Algebra liniowa 1 wnicza GiS, Wrocław 2002. 11. E. układy równań, PG, Gdańsk 2003.
	eResources addresses	Adresy na platformie eNauczal	
Example issues/ example questions/ tasks being completed	1. Find the domain and the set of values of the function $f(x)=\arcsin (3 x-2)+$. Determine the inverse function of f . 2. Find the derivative of $y=4 x\left(3 x^{2}+5\right)^{5}$. 3. Sketch the graph of the function $\mathrm{f}(\mathrm{x})=\mathrm{x}$-Inx. Identify any local extrema and points of inflection. 4. Find the absolute extrema of $f(x)=4 x-36 x^{-1}$ on the interval $[1,6]$. 5. Calculate $4 x^{-1} \operatorname{lnxdx}$. 6. Find A^{-1} if the matrix A is a 2×2 matrix of the elements $a_{i j}=3 i-j$. 7. Find the distance between lines $1:(x-9) / 4=(y+2) /(-3)=z$ and $k: x /(-2)=(y+7) / 9=(z-2) / 2$.		
Work placement	Not applicable		

