Subject card

| Subject contents | LECTURES:
 History of computers, architecture of a numerical computer, algorithms and flow charts, numerical formats
 of different types of data, basic classes of software (operating systems), digital-to-analog and analog-todigital
 conversion, basic programming in python; elementary statistics of one and two variables, linear regression,
 statistical tests,
 numerical instability, solving non-linear equations (e.g. bisection method), numerical
 interpolation and integration.
 LABORATORY:
 General section: using advanced functionalities of MSOffice class software (Word, Excel), basic
 programming
 in python | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Example issues/ example questions/ tasks being completed	Answer each question in a concise manner, with up to 4-5 sentences per answer. The set draws on the topics covered in class, but also provides you with an opportunity to expand your knowledge on the subject and rethink certain issues that might have arisen in the lab. Feel free to search for answers in the Internet, but please make sure that you answer with your own words, based on your best understanding of each topic! 1. You can easily interpolate between any two points using a straight line, and between any three points using a parabola. Can you interpolate between any N points using a single polynomial (that is, find one function that passes through all those points)? If so, what is the intuitive way to do it? [1.5 pt] 2. Suppose that you want to numerically solve an equation whose variables cannot be separated, that is, you cannot explicitly write it in the form $y=f(x)$. (A good example is the one considered in the class, $(x 2)^{\wedge} 2$ $+(y 3)^{\wedge} 29=x^{\wedge} 22 y$, which describes a parabola intersecting a circle.) Provided that you have a good solving algorithm at hand (e.g. Excels Solver), how would you determine the numberof solutions for this equation? [1.5 pt] The bisection method in mathematics is a root-finding method that repeatedly bisects an interval and then selects a subinterval in which a root must lie for further processing. It is a very simple and robust method, but it is also relatively slow (see:https://en.wikipedia.org/wiki/Bisection_method).Task: write a python script for solving the following equation in the proper interval with precision $=108$. Show results using pyplot. sin $x e^{\wedge} x+1=0, x[4,1]$ 2. What will be the output of the following python codes: a) message $=$ 'meet me at Pigalle on Thursday 12th, 3:45 am' for character in message: if character.isdigit(): print(character, end=")
Work placement	Not applicable

