Subject card

Subject contents	A vector space, a basis of a vector space, linear mappings, the matrix of a linear mapping. Eigenvalues, eigenvectors of a linear mapping. Tensor calculus. The basic notions of variational calculus. Extrema of a functional. Fourier series.		
Prerequisites and co-requisites	Completed undergraduate.		
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade
	written exam, 90 minutes	50.0\%	100.0\%
Recommended reading	Basic literature	F.Leja, Rachunek różniczkowy i całkowy, Państwowe wydawnictwo naukowe, Warszawa 1978, W. Kołodziej, Wybrane rozdziały analizy matematycznej, Państwowe Wydawnictwo Naukowe, 1970. Wyd. 1, Jacek Komorowski, Od liczb zespolonych do tensorów, spinorów, algebr Liego i kwadryk, Państwowe Wydawnictwo Naukowe, Warszawa 1978. Uzupełniajaca lista	
	Supplementary literature	Brak zaleceń	
	eResources addresses		
Example issues/ example questions/ tasks being completed	1. Show that the vectors $1,1+x, 1+x+x 2,1+x+x 2+x 3$ form a basis of the vector space consisting of all polynomials of deegree at most 3 . 2. Find the eigenvalues and the eigenvectors of the linear mapping $T([x, y, z])=] 2 x+2 z, 4 y, 2 x+2 z]$, find the matrix of this linear mapping in the basis of eigenvectors. 3.Find extrema of the functional $J[y]=1.2\left(y^{\prime}\right) 3 \mathrm{dx}$ with the conditions $\mathrm{y}(1)=0, \mathrm{y}(2)=1$. 4. Find the Fourier series for the function $f(x)=-x,-\pi \leq x \leq 0, f(x)=x, 0 \leq x \leq \pi$.		
Work placement	Not applicable		

