

。 GDAŃSK UNIVERSITY OF TECHNOLOGY

Subject card

Subject name and code	Modeling of non-equilibrium processes, PG_00064746							
Field of study	Power Engineering							
Date of commencement of studies	February 2025		Academic year of realisation of subject			2024/2025		
Education level	second-cycle studies		Subject group			Obligatory subject group in the field of study		
						Subject group related to scientific research in the field of study		
Mode of study	Full-time studies		Mode of delivery			at the university		
Year of study	1		Language of instruction			Polish		
Semester of study	1		ECTS credits		2.0			
Learning profile	general academic profile		Assessment form		assessment			
Conducting unit	Department of Energy and Industrial Apparatus -> Faculty of Mechanical Engineering and Ship Technology							
Name and surname	Subject supervisor		prof. dr hab. inż. Dariusz Mikielewicz					
of lecturer (lecturers)	Teachers		dr hab. inż. Tomasz Muszyński					
			prof. dr hab. inż. Dariusz Mikielewicz					
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	t	Seminar	SUM
	Number of study hours	15.0	15.0	0.0	0.0	0.0		30
	E-learning hours included: 0.0							
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study		SUM
	Number of study hours	30		9.0		11.0		50
Subject objectives	Presentation of fundamental mechanisms and law governing the thermodynamics of irreversible processes. Familiarisation with approaches to the analysis of irreversible processes. Analysis of examples of irreversible processes and their description. Introduction to the analysis of processes using the criterion of of minimum entropy production							

Learning outcomes	Course outcome	Subject outcome	Method of verification				
	[K7_U02] formulates and tests hypotheses concerning problems related to energy conversion processes, their efficiency, control, safety and impact on the environment, as well as simple research problems	Identifies non-equilibrium processes in thermal-hydraulic problems	[SU2] Assessment of ability to analyse information				
	[K7_U01] utilizes acquired analytical, simulation, and experimental methods, as well as mathematical models for analysis and evaluation of energy systems, machines and devices, transmission grids and internal installations	Understands non-equilibrium issues in thermal-hydraulic problems	[SU3] Assessment of ability to use knowledge gained from the subject				
	[K7_W02] demonstrates structured and theory supported knowledge encompassing key issues in the field of Power Engineering, enabling modeling and analysis of energy systems, machines and devices, transmission grids and internal installations	Applies differential equations to the description of thermal- hydraulic problems	[SW1] Assessment of factual knowledge				
	[K7_W13] explains the main principles of individual and teamwork organization, including various forms of entrepreneurship utilizing knowledge from the field of engineering and technical sciences and disciplines relevant to the course of study	Can conduct analysis of a problem with at least two coupled simultaneous effects.	[SW1] Assessment of factual knowledge				
Subject contents	1. Laws of thermodynamics. Reversible and irreversible processes.						
	2. Local formulation of second law of thermodynamics						
	3. Thermodynamics forces and flows, source of entropy. Entropy balance.						
	4. Coniugated processes. Curie pronciple. Onsager principle						
	5. Sources of entropy in heat and mass transfer processes. Minimisation of entropy sources						
	6. Egzergy, egzergetica efficiency. Egzergy balance						
Prerequisites and co-requisites	thermodynamics, fluid mechanics, mathematics, physics, heat transfer						
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade				
and criteria	Tutorial test	60.0%	50.0%				
	final test on lecture	60.0%	50.0%				
Recommended reading	Basic literature	Szargut J., Termodynamika, PWN, Warszawa 1991 G. Lebon, D. Jou, J. Casas-Vázquez: Understanding Non-equilibrium Thermodynamics, Springer-Verlag Berlin, 2008					
	Supplementary literature Szargut J., Termodynamika, PWN, Warszawa 1991						
		Gumiński K., Termodynamika procesów nieodwracalnych, PWN, Warszawa 1986 Bejan A., Advanced engineering thermodynamics, Wiley, Hoboken 2006 Kaushik S.C. et al. Finite Time Thermodynamics of Power and Refrigeration Cycles, Springer , 2017					

	eResources addresses	Adresy na platformie eNauczanie:	
Example issues/ example questions/ tasks being completed	Explain the mechanisms and law governing the thermodynamics of non-equilibrium processes.		
Work placement	Not applicable		

Document generated electronically. Does not require a seal or signature.