Subject card | Subject name and code | Concurrent programming and real time systems, PG_00064786 | | | | | | | | | |---|--|---|---|-------------------------------------|----------|---|-----------------|------------|--| | Field of study | Mechatronics | | | | | | | | | | Date of commencement of studies | February 2025 | | Academic year of realisation of subject | | | 2024/2025 | | | | | Education level | second-cycle studies | | Subject group | | | Obligatory subject group in the field of study Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | | Semester of study | 1 | | ECTS credits | | | 3.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Department of Marine | Electronic Sys | stems -> Facul | ty of Electronic | s, Teled | commur | nications and I | nformatics | | | Name and surname | Subject supervisor dr hab. inż. Iwona Kochańska | | | | | | | | | | of lecturer (lecturers) | Teachers | | | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | ect Seminar | | SUM | | | | Number of study hours | 30.0 | 0.0 | 0.0 | 15.0 | | 0.0 | 45 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in
classes include
plan | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 45 | | 8.0 | | 22.0 | | 75 | | | Subject objectives | The aim of the course is to familiarize the student with the techniques of programming the real-time systems and issues related to software development in multi-process and multi-thread systems. Students learn about the mechanisms of resource sharing in real-time systems the specificity of programming systems based on computers of industrial standards VMEBus, cPCI, PC104, PC104-PLUS. | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | [K7_U13] evaluates the feasibility and potential for utilizing new technical and technological achievements in accomplishing tasks characteristic for the field of study | | The student knows the techniques of concurrent programming of embedded systems working with different operating systems, especially real-time systems. | | | [SU4] Assessment of ability to
use methods and tools
[SU3] Assessment of ability to
use knowledge gained from the
subject | | | | | | [K7_W04] demonstrates knowledge encompassing selected issues in the field of detailed knowledge, particularly in the scope of methods, techniques, tools, and algorithms specific to Mechatronics | | The student knows the basic architectures of embedded systems, especially multiprocessor systems, and understands the basic problems associated with the software of such systems and ways to solve them. | | | [SW1] Assessment of factual knowledge | | | | | | [K7_U15] evaluates the feasibility of advanced methods and tools for solving complex engineering tasks of a practical nature, characteristic of the field of study, and selects and applies appropriate methods and tools for this purpose | | The student is able to use at an intermediate level programming techniques of multiprocess and multithreaded real-time systems | | | [SU1] Assessment of task fulfilment [SU4] Assessment of ability to use methods and tools [SU3] Assessment of ability to use knowledge gained from the subject | | | | | | [K7_K11] is aware of importance of professional acting, the need for critical verification of acquired knowledge and consulting experts opinion in case of facing difficulties with individual problem solving | | The student knows the standards of programming real-time systems and understands the need to comply with them. | | | [SK5] Assessment of ability to
solve problems that arise in
practice | | | | Data wygenerowania: 22.11.2024 00:27 Strona 1 z 2 | Subject contents | Review of real-time operating systems Concepts and elements of real-time systems Kernel and its environment in RT operating systems Process manager, resource manager, namespace management Memory management in RT systems. Processes and threads. Thread scheduling in RT systems. Thread synchronization methods in RT systems. Implementation of thread and process support in POSIX standard Implementation of thread support in the C ++ 11 language standard Basic problems of concurrent programming and ways of solving them | | | | | | |--|---|--|-------------------------------|--|--|--| | Prerequisites and co-requisites | Basics of programming in C or C ++ | | | | | | | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | and criteria | | 50.0% | 50.0% | | | | | | | 50.0% | 50.0% | | | | | Recommended reading | Basic literature 1. M. Ben-Ari, Principles of Concurrent and Distributed Program Addison Wessley, 2005 2. Andrew S. Tanenbaum, Herbert Bos, Modern Operating Syste (4th Edition), Pearson Prentice Hall, 2016 | | | | | | | | Supplementary literature | R. Love, Linux system programming", O'Reilly Media, 2013 J. Corbet, A. Rubini, G. Kroah-Hartman, Linux Device Drivers,
Third Edition, OReilly | | | | | | | eResources addresses | ddresses Adresy na platformie eNauczanie: | | | | | | Example issues/
example questions/
tasks being completed | Describe rigorous real-time systems. Describe the classical architecture of a real-time system. Advantages and disadvantages of a microkernel operating system architecture. What is priority inversion? Explain the race condition. Describe fork() and wait() functions in Linux. Describe the basic mechanisms for synchronizing threads in a concurrent program. Describe the basic problems of concurrent programming. | | | | | | | Work placement | Not applicable | | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 22.11.2024 00:27 Strona 2 z 2