Subject card | Subject name and code | Processing of digital signals and images, PG_00065005 | | | | | | | | | | |---|---|-----------|---|------------|--|--|---------|-----|--|--| | Field of study | Mechanical and Medical Engineering | | | | | | | | | | | Date of commencement of studies | February 2025 | | Academic year of realisation of subject | | | 2024/2025 | | | | | | Education level | second-cycle studies | | Subject group | | Obligatory subject group in the field of study | | | | | | | | | | | | | Subject group related to scientific research in the field of study | | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | | | Semester of study | 1 | | ECTS credits | | | 2.0 | | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | | Conducting unit | Zakład Mechatroniki -> Institute of Mechanics and Machine Design -> Faculty of Mechanical Engineering and Ship Technology | | | | | | | | | | | Name and surname | Subject supervisor | | dr hab. inż. M | | | | | | | | | of lecturer (lecturers) | Teachers | | dr hab. inż. Marek Galewski | | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | | | Number of study hours | 15.0 | 0.0 | 15.0 | 0.0 | | 0.0 | 30 | | | | | E-learning hours inclu | ıded: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity Participation in classes include plan | | | | Self-study S | | SUM | | | | | | Number of study hours | 30 | | 6.0 | | 14.0 | | 50 | | | | Subject objectives | Teaching students essential elements of digital sinal (ADC, DAC, filtration, spectral analysis) and image processing (point, context and morphological transformations) | | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | | [K7_W01] describes constructions of medical devices and their functioning on the base of knowledge related to the medical engineering | | The student describes basic algorithms in the field of signal and image processing | | | [SW1] Assessment of factual knowledge | | | | | | | [K7_U02] formulates hypotheses
to test research problems in the
field of medical engineering | | | | | [SU1] Assessment of task
fulfilment
[SU4] Assessment of ability to
use methods and tools | | | | | | | solving complex engineering tasks | | The student selects appropriate hardware components (considering their key parameters) and algorithms for signal and image processing, and avoids problems such as frequency leakage and aliasing | | | [SU3] Assessment of ability to use knowledge gained from the subject [SU1] Assessment of task fulfilment | | | | | Data wygenerowania: 05.01.2025 11:59 Strona 1 z 2 | Subject contents | Signal Processing Signals classification Analog to digital conversion Digital to analog conversion Besic signal parameters Fourier transform and signal spectrum FFT, IFFT Frequency leakage, time windows Sampling theorem Image processing Digital image and it's representation Geometrical transforms Point transfrorms Context transforms Spectral transforms Morphological transforms Image analysis Artifficial Intelligence in signal and image processing | | | | | | |--|---|---|-------------------------------|--|--|--| | Prerequisites and co-requisites | | | | | | | | Assessment methods and criteria | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | | Practical lab. exercises | 52.0% | 30.0% | | | | | | 2 written tests | 52.0% | 70.0% | | | | | Recommended reading | Basic literature | Lyons S.G, Understanding Digital Signal Processing, 2010 Gonzalez R., Woods R. Digital Image Processing, Person, 2018 | | | | | | | Supplementary literature | additional materials given during lectrue | | | | | | | eResources addresses | Adresy na platformie eNauczanie: | | | | | | Example issues/
example questions/
tasks being completed | Appropriate list of test subjects and questions will be given to the student a few weeks before the test. Examples: Present Nyquist condition for sampling frequency. What will happen in analog signal will be sampled without fulfilling Nyquist condition? Describe the structure of a typical AD channel | | | | | | | Work placement | Not applicable | | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 05.01.2025 11:59 Strona 2 z 2