Subject card | Subject name and code | Machine Learning I, PG_00053428 | | | | | | | | |---|---|--|--|-------------------------------------|------------------------|--|---------|-----| | Subject name and code | Automation, Robotics and Control Systems | | | | | | | | | Field of study Date of commencement of | | | | | | | | | | studies | i cuiudiy 2024 | | Academic year of realisation of subject | | | 2024/2025 | | | | Education level | second-cycle studies | | Subject group | | | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | Semester of study | 2 | | ECTS credits | | | 3.0 | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | Conducting unit | Faculty of Electrical and Control Engineering | | | | | | | | | Name and surname | Subject supervisor | | dr hab. inż. M | lichał Grochowski | | | | | | of lecturer (lecturers) | Teachers | | | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | of instruction | Number of study hours | 15.0 | 0.0 | 0.0 | 15.0 | | 0.0 | 30 | | | E-learning hours inclu | | | 1 | | | | | | Learning activity and number of study hours | Learning activity | Participation i
classes include
plan | | Participation in consultation hours | | Self-study | | SUM | | | Number of study hours | 30 | | 10.0 | | | | 75 | | Subject objectives | The aim of the course is to introduce students to a comprehensive knowledge of the dynamically developing field of Machine Learning and to indicate its practical applications in widely understood automation and computer science. | | | | | | | | | Learning outcomes | Course out | Subject outcome | | | Method of verification | | | | | | K7_U07 | | Students will be able to apply known artificial intelligence tools and algorithms to solve research problems e.g. to design a neural classifier. | | | [SU4] Assessment of ability to use methods and tools | | | | | K7_W11 | | The student in a small team is able to design, prepare and carry out an experiment, and then draw appropriate conclusions. For example, he/she is able to prepare a diagnostic system, which allows to identify damage to a selected system. | | | [SW3] Assessment of knowledge contained in written work and projects | | | | Subject contents | The programme contents will be realised in three thematic blocks: 1. Data analysis, among others:-exploratory research- data grouping, clustering - feature selection and extraction, - dimension reduction, - data normalization,- multidimensional data visualization. 2. Models and methods of their learning, e.g:-regression models, - Support vector machines, - Neural networks, - recurrent neural networks,- deep neural networks, - learning: supervised, unsupervised, semi-supervised, reinforcement learning- decision trees-random forests- ensembling and gradient boosting methods- automatic machine learning (AutoML)3. Model performance analysis and improvement, including- quality measures of model performance, - regularization techniques,- model validation,- selection of hyperparameters for models,- analysis of algorithm performance using explanatory artificial intelligence (XAI). | | | | | | | | | Prerequisites and co-requisites | Basic knowledge of artificial intelligence methods and optimisation | | | | | | | | Data wygenerowania: 24.11.2024 03:21 Strona 1 z 2 | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | |--|--|---|-------------------------------|--|--| | and criteria | Ocena projektu | 50.0% | 50.0% | | | | | Kolokwium | 50.0% | 50.0% | | | | Recommended reading | Basic literature | Bonaccorso, G. Algorytmy uczenia maszynowego. Zaawansowar techniki implementacji. Helion, 2019 Szeliga, M. Data Science i uczenie maszynowe. Wydawnictwo Naukowe PWN, 2017. Grus, J. Data science od podstaw. Analiza danych w Pythonie. Helion, 2019. Bengio, Y., Courville A., Goodfellow I. Deep Learning. Systemy uczące się. Wydawnictwo Naukowe PWN, 2018. Alpaydin, E. Introduction to Machine Learning. The MIT Press Cambridge, Massachusetts London, England 2010. Chollet, F. Deep Learning. Helion, 2019 | | | | | | Supplementary literature | Haykin, S. Neural Networks and Learning Machines (3rd Enerotice Hall, 2009. Bishop C. M. Pattern Recognition and Machine Learning. S 2006. MATLAB Statistics and Machine Learning Toolbox User's C 2021. James, Gareth, et al. An introduction to statistical learning. 112. New York: springer, 2013. Murphy, Kevin P. Machine learning: a probabilistic perspec MIT press, 2012. | | | | | | eResources addresses | ces addresses Adresy na platformie eNauczanie: | | | | | Example issues/
example questions/
tasks being completed | Feature mining and knowledge extraction from large data sets, data normalisation, treatment of missing data, dimension reduction, visualisation of multidimensional data. Analysis of footballers' characteristics in terms of their suitability for a given team/position. Detection of anomalies/diagnosis of processes on the basis of multidimensional analysis of signals from measuring devices. | | | | | | Work placement | Not applicable | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 24.11.2024 03:21 Strona 2 z 2