Subject card | | 20 200000 | | | | | | | | | |---|---|--|---|------------|-------------|--|------------|-----|--| | Subject name and code | | , PG_00065234 | | | | | | | | | Field of study | Transport | | | | | | | | | | Date of commencement of studies | February 2024 | | Academic year of realisation of subject | | 2024/2025 | | | | | | Education level | second-cycle studies | | Subject group | | | | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | | Semester of study | 2 | | ECTS credits | | | 3.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Department of Transportation Engineering -> Faculty of Civil and Environmental | | | | Engineering | | | | | | Name and surname | Subject supervisor dr hab. Daniel Kaszubowski | | | | | | | | | | of lecturer (lecturers) | Teachers | | | | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | of instruction | Number of study hours | 15.0 | 0.0 | 15.0 | 15.0 | | 0.0 | 45 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in didactic classes included in study plan | | | Self-study | | SUM | | | | | Number of study hours | 45 | | 0.0 | | 0.0 | | 45 | | | Subject objectives | Providing knowledge about techniques and applications of modeling and simulation of logistics processes and using the acquired knowledge in practice using a dedicated simulation application. | | | | | | | | | | Learning outcomes | Course outcome Subject outcome Method of verification | | | | | | rification | | | | | [K7_K02] makes competent and ethical decisions, caring for the public interest and maintaining economic, social and environmental values | | Ability to identify the possibilities of using simulation in various practical applications | | | [SK5] Assessment of ability to solve problems that arise in practice | | | | | | [K7_U02] presents logical and solid arguments regarding the obtained results, through analysis, synthesis of information in various technical contexts, critically approaching their interpretation | | Ability to interpret simulation results and identify their causes. | | | [SU2] Assessment of ability to analyse information | | | | | | [K7_W01] identifies in an in-depth way phenomena related to the field of study as well as theories describing them and possible methods of analyzing processes occurring in the life cycle of technical systems | | Ability to identify problematic issues in the project task being carried out | | | [SW3] Assessment of knowledge contained in written work and projects | | | | | | [K7_U05] cooperates with other people in the implementation of team work, both as a leader and a team member, effectively achieving set goals | | The ability to jointly develop assumptions for solving a design problem. | | | [SU1] Assessment of task fulfilment | | | | | | [K7_K01] recognizes the importance of knowledge related to the field of study in solving cognitive and practical problems | | Ability to independently formulate research problems | | | [SK5] Assessment of ability to solve problems that arise in practice | | | | | Subject contents | Definition of simulation and modeling Characteristics of operating systems Principles of execution, examples and advantages of simulation Simulation users Simulation procedure Simulation of queuing systems Discrete event simulation | | | | | | | | | | Prerequisites and co-requisites | Basic knowledge of the | ne functioning o | of logistics syst | ems | | | | | | | | | | | | | | | | | Data wygenerowania: 24.11.2024 06:15 | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | |--|---|--|-------------------------------|--|--| | and criteria | Lecture - test | 60.0% | 50.0% | | | | | Practical work | 60.0% | 50.0% | | | | Recommended reading | Basic literature Supplementary literature | A. M. Law, Simulation Modeling and Analysis. McGrawHill
Education, 2015 K. A. Jurczyk, Flexsim. Podrećznik użytkownika. Intermarium, 2024 A. G. GreenWood, Simulation Primer, FlexSim, 2019 A. G. GreenWood, Simulation Software Primer, FlexSim, 2020 Actual industry-related literature | | | | | | eResources addresses | Adresy na platformie eNauczanie: | | | | | Example issues/
example questions/
tasks being completed | 1. Basics of 3D mode 2. Creating element flow lo 3. gic Defining parameters of objects in the model 4. Model of a quality control station 5. Model of the conveyor system | | | | | | Work placement | Not applicable | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 24.11.2024 06:15 Strona 2 z 2