Subject card | Subject name and code | Models in spatial development, PG_00065312 | | | | | | | | | |---|--|--|--|-------------------------------------|--------|---|---------|-------------|--| | Field of study | Spatial Development | | | | | | | | | | Date of commencement of studies | February 2025 | | Academic year of realisation of subject | | | 2025/2026 | | | | | Education level | second-cycle studies | | Subject group | | | Obligatory subject group in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | | Semester of study | 2 | | ECTS credits | | | 2.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Department of Urban Design and Regional Planning -> Faculty of Architecture -> Wydziały Politechniki
Gdańskiej | | | | | | | olitechniki | | | Name and surname | Subject supervisor | | dr inż. Robert Skrzypczyński | | | | | | | | of lecturer (lecturers) | Teachers | | dr inż. Robert | Robert Skrzypczyński | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | of instruction | Number of study hours | 30.0 | 0.0 | 0.0 | 0.0 | | 0.0 | 30 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in didactic classes included in study plan | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 30 | | 4.0 | | 16.0 | | 50 | | | Subject objectives | To acquaint students with various types of models used in spatial management, methods of their creation and application. | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | [K7_U02] analyzes and critically evaluates the existing spatial phenomena and solutions occurring in urbanized structures of different scales (in the district, city, region); indicates solutions to problem situations and determines the appropriate directions of spatial development, taking into account multiple conditions; prepares up elements of planning studies on spatial policy and development strategies of the city and the region | | Student indicates the place and method of applying models in the process of planning cities and regions | | | [SU2] Assessment of ability to analyse information | | | | | | [K7_U04] plans and carries out computer simulations; uses information and communication technologies in an advanced way; interprets the obtained results and draws conclusions on phenomena related to spatial development | | Student can choose a quantitative model based on digitized tools, which is appropriate to the task related to spatial planning and identified spatial conditions | | | [SU1] Assessment of task
fulfilment
[SU4] Assessment of ability to
use methods and tools | | | | Data wygenerowania: 08.09.2025 19:45 Strona 1 z 2 | Subject contents | | | | | | | |--|---|--|-------------------------------|--|--|--| | | The concept and types of models and their role. Iconographic and descriptive (ideological, conceptual) models concerning cities historical and contemporary. Models in urban, region and country planning - creation and application. Models of tourism development. Systemic views of cities and other social territorial systems. Population models. Partial and comprehensive quantitative models (mathematical and simulation models of cities): model classifications, Lowry model, models: gravity, flow, Land-Use Transportation Interactions (LUTI), cellular automata, Agent-Based Models, microsimulation models. The paradigm of Zipser spatial decisions, ORION. Predictive models based on machine learning tools and neural networks. Data sources applicable for quantitative models. Models of regional growth. Spatial processes, selected theories of spatial management - model approaches. City control models. Application of models in scenarios. Applicability of quantitative models in the planning practice - the example of "smart city" and "resilient city" Classical theories of urban analysis in quantitative big data based-models. | | | | | | | Prerequisites and co-requisites | | | | | | | | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | and criteria | Colloquium (test) | 50.0% | 80.0% | | | | | | Activity during lectures - tests (quizzes) | 50.0% | 20.0% | | | | | Recommended reading | Carta, S., Big Data, Code and the Discrete City Shaping Publi Realms, Routledge, 2020 Domański R., Gospodarka przestrzenna. Podstawy teoretyczi (rozdz. 9), WN PWN, Warszawa 2006. Kitchin R., Lauriault, T.P., McArdle, G., Data and the City, Routledge, 2018 Malisz B., Teoria kształtowania układów osadniczych, Arkady Warszawa 1981. Mironowicz I., Modele transformacji miast, Oficyna Wyd. Politechniki Wrocławskiej, Wrocław 2016. Offenhuber, D., C., Decoding the City: Urbanism in the Age of Data, MIT, 2014 Prezentacje do wykładów (pliki pdf). Shi, W., Goodchild, M., Batty, M., Kwan, MP., Zhang, A. (red Urban Informatics, Springer, 2021) Suchecki B., Ekonometria przestrzenna. Metody i modele ana danych przestrzennych, Wyd. C.H, Beck, 2010 van Nes, A., Yamu, C., Introduction to Space Syntax in Urban Studies, Springer, 2021. | | | | | | | | Supplementary literature | Majda T., Mironowicz I. (ed.), Manifesty urbanistyczne, Bibliotek
Urbanisty 15, Warszawa 2017. Zipser T, Sławski J. Modele procesów urbanizacji, Studia KPZK
PAN XCVII, PWE, Warszawa 1988. | | | | | | | eResources addresses | eResources addresses | | | | | | Example issues/
example questions/
tasks being completed | Types of models from the point of view of: the way of expressing reality / the goals of their construction In which phases of the planning process the models can be used? What can models refer to in designing the spatial structure of the city? What submodels does the LUTI Model contain? What data can supply quantitative models? How big data can enhance the process of shaping cities? How the "space syntax" methodology can be applicable in the planning practice? List examples of the use of machine learning and neural networks as a tools helping to understand urbanization processes. | | | | | | | Work placement | Not applicable | | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 08.09.2025 19:45 Strona 2 z 2