Subject card | Subject name and code | Aeroelasticity and durability of wind turbines, PG_00065624 | | | | | | | | | |---|---|--|---|-------------------------------------|--------|---|---------|-----|--| | Field of study | Naval Architecture and Offshore Structures | | | | | | | | | | Date of commencement of studies | February 2025 | | Academic year of realisation of subject | | | 2025/2026 | | | | | Education level | second-cycle studies | | Subject group | | | Specialty subject group Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | | Semester of study | 2 | | ECTS credits | | 2.0 | | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Institute of Naval Architecture -> Faculty of Mechanical Engineering and Ship Technology -> Wydziały Politechniki Gdańskiej | | | | | | | | | | Name and surname | Subject supervisor | | dr hab. inż. Paweł Dymarski | | | | | | | | of lecturer (lecturers) | Teachers | | dr hab. inż. Paweł Dymarski | | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | :t | Seminar | SUM | | | of instruction | Number of study hours | 15.0 | 15.0 | 0.0 | 0.0 | | 0.0 | 30 | | | | E-learning hours inclu | -learning hours included: 0.0 | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in didactic classes included in study plan | | Participation in consultation hours | | Self-study St | | SUM | | | | Number of study hours | 30 | | 5.0 | | 15.0 | | 50 | | | Subject objectives | The aim of the course is to familiarize students with the phenomenon of aeroelasticity of a wind turbine blade, i.e. deformation and / or vibration of a turbine blade due to the action of aerodynamic forces. | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | [K7_U01] applies acquired analytical, simulation, and experimental methods, as well as mathematical models for analysis and evaluation of shipborne and offshore systems and processes | | | | | [SU1] Assessment of task
fulfilment
[SU4] Assessment of ability to
use methods and tools | | | | | [K7_U02] formulates and tests hypotheses concerning problems related to shipborne and offshore systems/processes, as well as simple research problems | | ing problems
and offshore
as well as | The student is able to solve simple design tasks related to the analysis of the aeroelasticity of a wind turbine blade. | | | [SU1] Assessment of task
fulfilment
[SU4] Assessment of ability to
use methods and tools | | | | Data wygenerowania: 26.09.2025 19:04 Strona 1 z 3 | Subject contents | 1. The theory of the aerodynamic profile 1.1 Geometric description 1.2 Lifting force, drag force, profile moment (2D) 1.3 Pressure coefficient CP, pressure distribution 1.4 Mechanism of lift force generation, Kutta-Joukowski equation 2. The theory of the aerofoil (wings) 2.1 Geometric description of the aerofoil 2.2 Lift force on the aerofoil/wing (3D) 3. Numerical analysis of the aerofoil 3.1 Arrangement of the vortex filaments on and behind the wing 3.2 The lifting line theory 4. The blade as a bending beam 4.1 Revision of basic knowledge of the subject 4.1.1 Characteristics of the beam cross-section 4.1.2 Basic solutions for a bending beam. 4.3 Beam stiffness 4.4 Equation of beam deflection 4.5 Stiffness matrix 4.6 Aeroelasticity: static case - blade bending 5. The blade as a twisted beam | | | | | | |--|---|--|-------------------------------|--|--|--| | | | | | | | | | 5.1.1 Characteristics of the aerofoil cross-section as a closed-profile beam (torsion) 5.1.2 Basic solutions for a twisted beam 5.2 Aeroelasticity: static case - blade twisting | | | | | | | | | 6. Introduction to aerofoil dynamics 6.1 Dynamics of a system with one degree of freedom. Mass spring system 6.2 Dynamics of a system with many degrees of freedom. Model of concentrated (point) masses (lumped mass model) 7. The "real" velocity field of the flowing wind turbine blade. 7.1 Determining the Velocity Field of the Selected Turbine Blade Profile. Stationary case 7.2 Determination of the non-stationary velocity field of the selected turbine blade profile for the stationary wind speed profile. 7.3 The case of a non-stationary wind velocity field. 7.3.1 The spectrum of the wind 7.3.2 Determination of the non-stationary velocity field of the selected turbine blade profile. 8. Basics of blade/foil analysis in the frequency domain 9. Dynamics of the turbine rotor - tower system. Introduction. | Prerequisites and co-requisites | - the student has basic knowledge of fluid mechanics: flow continuity equation Bernoulli equation the concept of lift force and drag force on the aerofoil - the student has a basic knowledge of the strength of materials: cross-section characteristics: moments of inertia and strength factors basic knowledge of beam bending (statically determinate) basic knowledge of screwing closed profiles basic knowledge of the theory of vibrations - mass on a spring with a damping element | | | | | | | | | | | | | | | | - basic knowledge of general mechanics
equilibrium equations (statics)
Newton's laws of motion | | | | | | | | - basics of numerical methods numerical integration basic time integration methods | | | | | | | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | and criteria | Exercises | 60.0% | 50.0% | | | | | | Lecture | 60.0% | 50.0% | | | | | Recommended reading | Basic literature | 1. Snorri Gudmundsson: GENERAL AVIATION AIRCRAFT DESIGN: APPLIED METHODS AND PROCEDURES. Amsterdam, Elsevier 2014 2. R.K. Bansal: A Textbook of Strength of Materials, 4th edition, Boston 2009 3. John D. Anderson, Jr.: Fundamentals of Aerodynamics, Sixth Edition 4. Martin O. L. Hansen: Aerodynamics of Wind Turbines 2nd ed. London * Sterling, Earthscan, 2008 5. Srinivasan Chandrasekaran: Dynamic Analysis and Design of Offshore Structures. Springer 2015, 2018 | | | | | | | Supplementary literature | 6. Ira H. Abbott, Albert E. Von Doenhoff THEORY OF WING SECTIONS Including a Summary of Airfoil Data. DOVER PUBLICATIONS, INC., NEW YORK 1949, 1959 7. Dewey H. Hodges, G. Alvin Pierce: Introduction to Structural Dynamics and Aeroelasticity. Cambridge University Press 2002, 2011 8. James F. Wilson: "Dynamics of Offshore Structures" 2nd ed. John Wiley & Sons 2003 9. E. Gaertner, J. Rinker, L. Sethuraman: Definition of the IEA Wind 15-Megawatt Offshore Reference Wind Turbine. Technical Report, NREL, March 2020 | | | | | Data wygenerowania: 26.09.2025 19:04 Strona 2 z 3 | | eResources addresses | | |--|---|--| | Example issues/
example questions/
tasks being completed | CD, CM coefficients as a function of 2. Explanation of the phenomenon of 3. Lift force on finite span aerofoils. 4. Characteristics of the cross-sectic 5. Determination of internal forces in with a constant (or variable) cross-sectic 7. Determination of internal forces in 8. The problem of beam stiffness. St 9. Overview of the dynamics of a syswith a damping element). Equation of 10. Overview of the dynamics (equal example of 2-3 degrees of freedom) 11. Velocity field (velocity componer | f the formation of lift force. Kutta-Joukowski theorem Diverview of the carrier line method on of a bending beam a bending beam and the deflection line. A beam restrained on one side ection on of a closed profile twisted beam a twisted beam and the angle of twist. One-sidedly restrained beam iffness matrix stem with one degree of freedom (on the example of a mass on a spring of motion, response to sinusoidal input tion of motion) of a system with many degrees of freedom (on the | | Work placement | Not applicable | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 26.09.2025 19:04 Strona 3 z 3