

。 GDAŃSK UNIVERSITY OF TECHNOLOGY

Subject card

Subject name and code	Engineering Mechanics, PG_00060087								
Field of study	Civil Engineering								
Date of commencement of studies	October 2024		Academic year of realisation of subject		2024/2025				
Education level	first-cycle studies		Subject group						
Mode of study	Full-time studies		Mode of delivery		at the university				
Year of study	1		Language of instruction			Polish			
Semester of study	2		ECTS credits		8.0				
Learning profile	general academic profile		Assessment form		exam				
Conducting unit	Department of Structural Mechanics -> Faculty of Civil and Environmental Engineering								
Name and surname	Subject supervisor dr hab. inż. Agnieszka Tomaszewska								
of lecturer (lecturers)	Teachers		dr inż. Magdalena Oziębło						
			dr hab. inż. Agnieszka Tomaszewska						
			dr inż. Marcin Zmuda Trzebiatowski						
			mgr inż. Łukasz Żmuda-Trzebiatowski						
			dr inż. Anna Pestka						
			dr inż. Katarzyna Szepietowska						
			dr hab inż Treneusz Kreja						
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	t	Seminar	SUM	
	Number of study hours	30.0	60.0	0.0	0.0		0.0	90	
	E-learning hours included: 0.0								
Learning activity and number of study hours	Learning activity Participation ir classes include plan		didactic Participation in ed in study consultation hours		Self-study		SUM		
	Number of study hours	per of study 90		10.0		100.0		200	
Subject objectives	Students should be able to: construct static schemes and recognize between statically determinate and statically indeterminate systems; write equilibrium equations and calculate reactions; determinate internal forces and influence lines for statically determinate beam structures; use influence lines to analyse the extreme loading conditions								

Learning outcomes	Course outcome	Subject outcome	Method of verification			
	[K6_W02] Demonstrate knowledge and understanding of the processes and established methods of analysis / solution of engineering issues & problems in the field of civil engineering and of their limitations.	Basic-level background of terms and principles of classical mechanics. The use of principles of static model formation. The assessment of statical determinacy, geometric stability and the degree of structural redundancy.	[SW3] Assessment of knowledge contained in written work and projects			
	[K6_U02] Analyse & solve engineering issues & problems in the field of civil engineering by applying appropriate and relevant established analytical, numerical and experimental methods.	The student conducts statical analysis of a given statically determinate system under a specified load. The student draws influence lines of static response forces in a system and applies them to find extreme combinations of a specified load type.	[SU1] Assessment of task fulfilment [SU3] Assessment of ability to use knowledge gained from the subject			
	[K6_W06] Demonstrates practical knowledge and understanding of materials, devices and tools, processes and technologies in the field of civil engineering (and their limitations).	Analysis of the statics of the building construction, support schemes and types of loads acting on building structures.	[SW3] Assessment of knowledge contained in written work and projects			
	[K6_U01] Apply knowledge and understanding of mathematics as well as sciences and engineering disciplines underlying civil engineering to solve engineering problems and issues.	Formation of equilibrium equations and determining support reactions. The ability to compose functions and diagrams of cross- sectional forces, influence lines and envelopes of cross-sectional forces in planar statically determinate systems. The application of influence lines to analyse extreme structural loading cases.	[SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools			
	[K6_U05] Conducts research (obtaining information, simulations, experimental methods) in the field of construction in order to solve specific tasks and report research results.	Experimental research using simple physical models of structural systems. Improving skills in structure analysis using the "In Search of Balance" computer application.	[SU4] Assessment of ability to use methods and tools [SU2] Assessment of ability to analyse information			
Subject contents	LECTURE Degrees of freedom and forces in beams. Differential equatio arches, three-hinged systems, truss forces for beams. Utilizing of influence trusses and complex systems. Extre TUTORIALS Solving problem related beams, frames, three-hinged system	internal forces in Statics. Determinat ns of equilibrium. Statically determina es and complex systems. Influence li ce lines. Influence lines for frames, al me loading. Envelope of internal forc d to: determination of reactions, intern is, trusses, complex systems, grids a	tion of reactions and internal ate planar structures: frames, nes of reactions and internal rches, three-hinged systems, es. Space trusses. Grids. nal forces and influence lines for ind space trusses.			
Prerequisites and co-requisites	Rudiments of vector algebra and and	alysis, differential and integral calculu	IS.			
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade			
and criteria	Written exam	60.0%	100.0%			
Recommended reading	Basic literature 1. Nimal Rajapakse, Dietmar Gross, Werner Hauger, Jörg Schröde Wolfgang A. Wall: Engineering Mechanics 1. Springer-Verlag Berlin Heidelberg 2009, https://doi.org/10.1007/978-3-540-8993					
	Supplementary literature	 Hibbeler R.C. Structural analysis. Printice Hall 1995. Carpinteri A. Structural mechanics. A unified approach. E & FN Spon 1997 Meriam J.L., Kraige, L.G., Engineering Mechanics. Statics. John Wiley & Sons 1998 				
	eResources addresses	Adresy na platformie eNauczanie: Mechanika Ogólna 2024/2025 - Moodle ID: 44001 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=44001				

Example issues/ example questions/ tasks being completed	 Draw the axial force, shear and moment diagrams for the given statically determinate structure. Draw the influence line for the given statically determinate structure.
Work placement	Not applicable

Document generated electronically. Does not require a seal or signature.