Subject card | Subject name and code | RELIABILITY OF ENGINEERING STRUCTURES, PG_00041318 | | | | | | | | |---|---|---|---|--------------------------------|-----------------------------------|---|------|-----| | Field of study | Civil Engineering | | | | | | | | | Date of commencement of studies | February 2025 | | Academic year of realisation of subject | | | 2025/2026 | | | | Education level | second-cycle studies | | Subject group | | | Optional subject group Subject group related to scientific research in the field of study | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | Semester of study | 2 | | ECTS credits | | | 3.0 | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | Conducting unit | Structural Mechanics Department -> Faculty of Civil and | | | il and Environm | nental E | ngineer | ring | | | Name and surname | Subject supervisor | | prof. dr hab. inż. Jarosław Górski | | | | | | | of lecturer (lecturers) | Teachers | | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | ct Seminar SI | | SUM | | | Number of study hours | 30.0 | 15.0 | 0.0 | 0.0 | | 0.0 | 45 | | | E-learning hours inclu | | | i | | | | | | Learning activity and number of study hours | Learning activity | Participation in
classes include
plan | | Participation i consultation h | articipation in onsultation hours | | udy | SUM | | | Number of study hours | 45 | | 5.0 | | 25.0 | | 75 | | Subject objectives | General information on uncertainty modelling in engineering analysis and design Distinction of three levels of reliability assessment, their domain and relevant operational methods | | | | | | | | | Learning outcomes | Course outcome Subject outcome Method of verific | | | | | fication | | | | | [K7_W04] has knowledge on advanced strength of materials, modeling and optimisation of materials and constructions; has knowledge of fundamentals of Finite Element Method and general nonlinear analysis of engineering constructions and systems | | The student adjusts a relevant reliability assessment method to the specified engineering task | | | [SW1] Assessment of factual knowledge | | | | | [K7_W16] knows methods of diagnostics of engineering objects, has knowledge about different kinds of defects in constructions and its reasons; knows means of fixing and reinforcing of constructions. [K7_U03] can perform classic statical and dynamical analysis of rod structures stability (trusses, | | The student recognizes basic uncertainty sources decisive for structural reliability The student performs numerical reliability assessment on a prescribed level | | | [SW1] Assessment of factual knowledge [SU5] Assessment of ability to present the results of task | | | | | frames and ties), both statically determined and undetermined as well as surface structures (plates, membranes and shells) [K7_W15] has deep and adequate knowlege of civil engineering, within offered specialization and | | The student recognizes the uncertainty origins in the process of engineering analysis and design | | | [SW1] Assessment of factual knowledge | | | | Subject contents | Probability theory - preliminaries. Probabilistic models for load and resistance variables. Basic definitions - reliability, failure probability. Random modelling of load and resistance variables. Reliability of structural systems. Levels of reliability methods – classification. Level I methods - application to standards and codes, partial safety factors. Level II methods – safety indices. Level III method - numerical procedures. Monte Carlo simulation, engineering examples. Random load combination. Time-variant reliability analysis. | | | | | | | | | Prerequisites and co-requisites | Structural mechanics, strength of materials, mathematics | | | | | | |--|---|---|-------------------------------|--|--|--| | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | and criteria | presentations | 0.0% | 100.0% | | | | | Recommended reading | Basic literature | Ang A. H-S., Tang W.H. Probability concepts in engineering. Wiley Chichester 2007 Hart G. Uncertainty analysis of loads and safety in structural engineering. Prentice Hall Englewood Cliffs 1982 Madsen H.O., Krenk S., Lind N.C. Methods of structural safety. Prentice Hall Englewood Cliffs 1986 Nowak A. Collins K. Reliability of structures. McGraw Hill New York 2000. | | | | | | | Supplementary literature | Augusti G., Baratta A., Casciati F. Probabilistic methods in structural engineering. Chapman & Hall, London 1984 Ditlevsen O., Madsen H. Structural reliability methods. Wiley Chichester 1996, | | | | | | | eResources addresses | Adresy na platformie eNauczanie: | | | | | | Example issues/
example questions/
tasks being completed | Three levels of reliability assessment, short description Basic Monte Carlo simulation algorithm adjusted to engineering problems | | | | | | | Work placement | Not applicable | | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 21.11.2024 20:32 Strona 2 z 2