

。 GDAŃSK UNIVERSITY OF TECHNOLOGY

Subject card

Subject name and code	Passive cooling systems in nuclear power systems, PG_00065901							
Field of study	Nuclear Engineering							
Date of commencement of studies	February 2025		Academic year of realisation of subject		2025/2026			
Education level	second-cycle studies		Subject group		Specialty subject group Subject group related to scientific research in the field of study			
Mode of study	Full-time studies		Mode of delivery		at the	university		
Year of study	1		Language	Language of instruction		Polish		
Semester of study	2		ECTS cred	ECTS credits		3.0		
Learning profile	general academic profile		Assessment form		assessment			
Conducting unit	Zakład Systemów i Urządzeń Energetyki Cieplnej -> Institute of Energy -> Faculty of Mechanical Engineering and Ship Technology							
Name and surname	Subject supervisor dr inż. Paweł Szymański							
of lecturer (lecturers)	Teachers							
Lesson types and methods	Lesson type	Lecture	Tutorial	Laboratory	Projec	t	Seminar	SUM
of instruction	Number of study hours	15.0	0.0	0.0	15.0		0.0	30
	E-learning hours inclu	uded: 0.0				-		
Learning activity and number of study hours			Participation in consultation hours		Self-study		SUM	
	Number of study hours	30		8.0		37.0		75
Subject objectives	The aim of the course passive cooling syste mass transport under passive technologies efficiency and operat reactor safety project	ems in nuclear r normal and er (heat pipes, th ional safety. In	power plants. S mergency conc ermosyphons, doing so, they	Students learn a litions, learn to phase change acquire the co	about th identify, materia mpeteno	e mech select lls, etc.)	anisms of pa and design a), and analysi	ssive heat and appropriate e their

Learning outcomes	Course outcome	Subject outcome	Method of verification
	[K7_U15] evaluates the feasibility of advanced methods and tools for solving complex engineering tasks of a practical nature, characteristic of the field of study, and selects and applies appropriate methods and tools for this purpose	Knowledge Be able to identify under which conditions and for which types of issues (different heat pipe configurations, thermosyphons or systems with phase-change materials) particular computational tools are of greatest cognitive and practical value. Skills	[SU1] Assessment of task fulfilment [SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools
		The student is able to properly select advanced design and simulation tools (e.g. engineering software) to solve specific problems related to passive cooling systems in nuclear power plants, taking into account the complexity of phenomena (heat and mass transport, phase change, natural convection). Is able to interpret and critically evaluate the results obtained from the methods used (e.g. numerical, experimental), comparing them with available literature data or industry standards. Is able to prepare appropriate assumptions and simplifications of the model (preserving the relevant physical aspects of the phenomena) and justify their influence on the final evaluation of the effectiveness of the passive cooling system.	
		Social competence The student demonstrates maturity in selecting research tools and methods, taking into account not only technical criteria and computational efficiency, but also cost, time-consumption and availability of resources and infrastructure. He/she realises the need for continuous improvement in modern technologies and tools for nuclear systems analysis and their application in engineering practice. Through these learning outcomes, the student acquires the ability to critically evaluate the suitability of various methods and tools (both computational software and experimental methods) in solving complex engineering tasks related to the design and evaluation of passive cooling systems in nuclear power, and is then able to select and apply the most suitable one for a given project.	

	Course outcome	Subject outcome	Method of verification
s k is P d	[K7_W03] demonstrates structured and theory supported knowledge encompassing key issues in the field of Nuclear Power Technologies, enabling design of energy processes and systems	Subject outcomeKnowledge:The student knows andunderstands the basic principlesof passive cooling systems innuclear power plants, includingtheir role in reactor safety andtheir impact on the overallefficiency of energy processes.Can characterise the main passivetechnologies (heat pipes,thermosyphons, phase changematerials, etc.) and explain theirapplication in the context ofdifferent reactor types.Knows the key materialrequirements and design criterianecessary for the selection andimplementation of passive coolingsystems.SkillsThe student is able to design aninitial passive cooling systemscheme for a selected reactor,taking into account normaloperating conditions andemergency scenarios.He/she is able to carry out athermodynamic analysis andevaluate the efficiency of theapplied solutions by selectingappropriate computational tools(e.g. numerical models).Be able to identify the risks andconstraints arising from theperformance characteristics ofpassive equipment underchanging process andenvironmental conditions.CompetencesThe student understands theimportance of nuclear safety andis able to work effectively with thedesign team on solutions toincrease the reliability of coolingsystems.He/	Method of verification [SW2] Assessment of knowledge contained in presentation [SW1] Assessment of factual knowledge

Course outcome	Subject outcome	Method of verification
Course outcome [K7_U04] creatively designs or modifies, either entirely or at least in part, nulear power systems, considering both technical and non-technical aspects, estimating costs and utilizing design techniques appropriate for tasks within the scope of Nuclear Power Technologies	Subject outcomeKnowledgeThe student knows andunderstands the principles ofintegrating passive coolingsystems into existing and newlydesigned nuclear power systems.He/she can indicate in whichareas of the reactor (core,auxiliary systems, steam circuits)the use of passive systems ismost effective and which aspects(technical, environmental,economic) should be taken intoaccount.SkillsThe student is able to creativelydesign or modify a selectedcomponent of a passive coolingsystem (e.g. a set of heat pipes,thermosyphons), taking intoaccount the given technicalspecifications and limitationsresulting from safety regulations.Is able to carry out a preliminarycost analysis for theimplementation of a passivecooling system in a nuclear powerplant, taking into account, amongother things, the choice ofmaterials, complexity of theinstallation or operating costs.Uses appropriate design andsimulation techniques (e.g.numerical calculations) to optimisecooling solutions in the context ofvarious criteria (e.g. efficiency,reliability, safety).Is able to present a proposedconcept for the implementation ormodification of a passive coolingsystem, taking into accounttechnical and non-technical(environmental, economic, social)arguments. <td>Method of verification [SU1] Assessment of task fulfilment [SU2] Assessment of ability to analyse information [SU4] Assessment of ability to use methods and tools</td>	Method of verification [SU1] Assessment of task fulfilment [SU2] Assessment of ability to analyse information [SU4] Assessment of ability to use methods and tools

	Course outcome	Subject outcome	Method of verification	
Subject contents	Course outcome [K7_U03] identifies and formulates task specifications in the scope of energy processes and systems including non-standard problems and taking into consideration their non-technical aspects.	Subject outcome Knowledge The student has a structured knowledge of the technical and regulatory requirements to be considered when formulating specifications for energy systems based on passive cooling systems. Skills The student is able to identify and define the design tasks necessary for the specification or modification of a passive cooling system in a nuclear power plant, taking into account both technical aspects (e.g. thermodynamic parameters, material selection) and nuclear safety constraints. He/she is able to formulate detailed design requirements for new and unusual applications (e.g. small modular reactors, hybrid cooling systems) using knowledge of the specifics of passive systems and their role in the heat removal process under different operating conditions.	Method of verification [SU1] Assessment of task fulfilment [SU4] Assessment of ability to use methods and tools [SU3] Assessment of ability to use knowledge gained from the subject	
	1 Introduction to cooling systems in in nuclear reactors Basic cooling requ and passive systems Examples of operation Gravity cooling systems thermosyphons, LHP loop heat pipes under failure conditions- Failure scer analysis and design of passive cooling selection criteria Performance requ challenges New technologies and o	irements for different reactor types.2 implemented solutions worldwide.Pa - Heat sinks and fins- Modern cooling s, CPL capillary flow tubes, phase ch narios and their impact on the perforr ng systems using heat pipes as an e irements.6 Future of passive cooling developments.	Prypes of cooling systems Active ssive cooling systems - principle of devices with (heat pipes, ange materials)4 Cooling systems nance of cooling systems.5. xample- Design methods Material systems- Technological	
Prerequisites and co-requisites	Knowledge of basic mathematics, ph	nysics, thermodynamics, materials so	ience, fluid mechanics.	
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade	
and criteria		56.0%	50.0%	
	Egzamin ustny	56.0%	50.0%	
Recommended reading	Basic literature	Bahman Zohuri "Heat Pipe Applications in Fission Driven Nuclear Power Plants"		
	Supplementary literature	Hussam Jouhara, David Reay, Ryan McGlen, Peter Kew, Jonathan McDonough "Heat Pipes: Theory, Design and Applications"		
	eResources addresses	Adresy na platformie eNauczanie:		

 example questions/ tasks being completed 1 Classification and theoretical background 1. Classification and theoretical background 1. Classification and theoretical background 1. Classification and theoretical background BWR and DWR reactors. What aspects should be taken into account when designing passive cooling systems for them? 2. Peasive system technologies and principle of operation 1. Describe the principle of operation of a heat pipe (Heat Pipe). What processes take place inside the tube during heat transport? 2. Peasive system technologies and principle of operation 1. Describe the principle of operation of a heat pipe (Heat Pipe). What processes take place inside the tube during heat transport? 2. How of loop heat pipes (LHP) differ from classical heat pipes? 3. Define the term phase change material (PCM). How can the use of PCM improve the reliability of a cooling system? 4. What factors are considered when selecting a working material for a heat pipe (e.g. water, ammonia, liquid metals)? 3. design and analysis of passive soyles were colling a working material for a heat pipe (e.g. water, ammonia, liquid metals)? 2. List and discuss the most important design criteria (e.g. maximum temperature, corrosion resistance, thermal properties) of a passive cooling system. 3. What calculation methods are used to analyse the performance of passive cooling systems? In which situations is a particular method most justifier? 4. Emergency conditions and nuclear safety 1. Prosent a Loss of Coolarit Accident (LoCA) type of emergency scenario. What role do passive cooling systems can reduce the risk of core metidown in an emergency without access to scheral description pressive souldings (e.g. AP1000, ESBWR). Indicate the key fractures of these systems. 3. What colling system parameters need to be monitored under emergency conditions to corifirm the correct op	_	
 1 Classification and theoretical background 1. Explain the difference between active and passive systems in the context of nuclear safety. 2. What is the role of gravity in passive heat dissipation in a nuclear power plant? 3. Compare the cooling requirements in PWR and BWR reactors. What aspects should be taken into account when designing passive cooling systems for them? 2. Passive system technologies and principle of operation 1. Describe the principle of operation of a heat pipe (Heal Pipe). What processes take place inside the the during heat transport? 3. How of too phast pipes (LHP) differ from classical heat pipes? 3. Use the term phase change material (PCM). How can the use of PCM improve the reliability of a cooling system? 4. Provide a diagram of how a thermosyphon works and discuss what physical phenomena enable it to wrok efficiently. 3. design and analysis of passive systems 1. What factors are considered when selecting a working material for a heat pipe (e.g. water, ammonia. high indicates)? 4. List and discuss the most important design criteria (e.g. maximum temperature, corrosion resistance, thrma properties) of a passive coding system. 3. What factors are considered when selecting a working material for a heat pipe (e.g. water, ammonia. high indicates)? 4. Emergency conditions and nuclear safety 4. Present a Loss of Coolant Accident (LICCA) type of emergency scenario. What role do passive cooling systems for the risk of core metidown in an emergency without access to external electrical power. 5. Diverse to extend electrical power. 6. Diverse to active the risk of core metidown in an emergency without access to external electrical power. 6. Diverse to extend the passive solutions? 7. Provide examples of reactors with advanced passive solutions (e.g. AP1000, ESBWR). Indicate the key features of hepse systems. 8. Probl	Example issues/ example questions/ tasks being completed	
 What is the role of gravity in passive heat dissipation in a nuclear power plant? Compare the cooling requirements in PWR and BWR reactors. What aspects should be taken into account when designing passive cooling systems for them? Passive system technologies and principle of operation Describe the principle of operation of a heat pipe (Heat Pipe). What processes take place inside the tube during heat transport? How do loop heat pipes (LHP) differ from classical heat pipes? Define the term phase change material (PCM). How can the use of PCM improve the reliability of a cooling system? How do loop heat pipes (LHP) differ from classical heat pipes? Befine the term phase change material (PCM). How can the use of PCM improve the reliability of a cooling system? How do loop heat pipes (LHP) differ from classical heat pipes (PCM) improve the reliability of a cooling system? How and analysis of passive systems What factors are considered when selecting a working material for a heat pipe (e.g. water, ammonia, liquid metals)? List and discuss the most important design criteria (e.g. maximum temperature, corrosion resistance, thermal properties) of a passive cooling system? What calculation methods are used to analyse the performance of passive cooling systems? In which students is a particular method most justified? Emergency conditions and nuclear safety Present a Loss of Coolant Accident (LOCA) type of emergency scenario. What role do passive cooling systems play in th? Discuss do waterial electrical power. Buscuss do waterial electrical power. Discuss do waterial electrical power. Discuss do waterial electrical power. Discuss development trends in passive cooling systems for small modular reactors (SMRs). What crite can anonfluids (ranofluids) play i	lasks being completed	1 Classification and theoretical background
 Describe the principle of operation of a heat pipe (Heat Pipe). What processes take place inside the tube during heat transport? How do loop heat pipes (LHP) differ from classical heat pipes? Define the term phase change material (PCM). How can the use of PCM improve the reliability of a cooling system? Provide a diagram of how a thermosyphon works and discuss what physical phenomena enable it to work efficiently. design and analysis of passive systems What factors are considered when selecting a working material for a heat pipe (e.g. water, ammonia, liquid metals)? List and discuss the most important design criteria (e.g. maximum temperature, corrosion resistance, thermal properties) of a passive cooling system. What calculation methods are used to analyse the performance of passive cooling systems? In which situations is a particular method most justified? Emergency conditions and nuclear safety Present a Loss of Coolant Accident (LOCA) type of emergency scenario. What role do passive cooling systems can reduce the risk of core meltdown in an emergency without access to external electrical power. What cooling system parameters need to be monitored under emergency conditions to confirm the correct operation of passive solutions? Examples of implementation and new technologies Provide examples of reactors with advanced passive solutions (e.g. AP1000, ESBWR). Indicate the key features of these systems. What role can nanofluids (nanofluids) play in further improving passive cooling systems? Provide man field taking into account. Operating conditions (pressure, temperature). Selection of working material and casing. Provide examples of reactors with advanced passive solutions? (e.g. AP1000, ESBWR). Indicate the key features of these systems. Problem / practical takis		 What is the role of gravity in passive heat dissipation in a nuclear power plant? Compare the cooling requirements in PWR and BWR reactors. What aspects should be taken into
 tube during heat transport? How do loop heat types (LHP) differ from classical heat pipes? Define the term phase change material (PCM). How can the use of PCM improve the reliability of a cooling system? Provide a diagram of how a thermosyphon works and discuss what physical phenomena enable it to work efficiently. design and analysis of passive systems What factors are considered when selecting a working material for a heat pipe (e.g. water, ammonia, liquid metals)? List and discuss the most important design criteria (e.g. maximum temperature, corrosion resistance, thermal properties) of a passive cooling system. What calculation is a particular method are used to analyse the performance of passive cooling systems? In which situations is a particular method most justified? Emergency conditions and nuclear safety Present a Loss of Coolant Accident (LOCA) type of emergency scenario. What role do passive cooling systems play in if? Discuss how passive cooling systems can reduce the risk of core metidown in an emergency without access to external electrical power. What cooling system parameters need to be monitored under emergency conditions to confirm the correct operation of passive solutions? Examples of implementation and new technologies Provide examples of reactors with advanced passive solutions (e.g. AP1000, ESBWR). Indicate the key features of these systems. Discuss development trends in passive cooling systems for small modular reactors (SMRs). What role can nanofluids (nanofluids) play in further improving passive cooling systems? Propose a passive cooling system concept for a selected part of a nuclear power plant (e.g. heat exchanger, reactor shield), taking into account: Operating conditions (pressure, temperature). Selection of working material and casing. Main safety constraints. Conduct a simplified heat balancc		2 Passive system technologies and principle of operation
 What factors are considered when selecting a working material for a heat pipe (e.g. water, ammonia, liquid metals)? List and discuss the most important design criteria (e.g. maximum temperature, corrosion resistance, thermal properties) of a passive cooling system. What calculation methods are used to analyse the performance of passive cooling systems? In which situations is a particular method most justified? Emergency conditions and nuclear safety Present a Loss of Coolant Accident (LOCA) type of emergency scenario. What role do passive cooling systems can reduce the risk of core meltdown in an emergency without access to external electrical power. What cooling system parameters need to be monitored under emergency conditions to confirm the correct operation of passive solutions? Examples of implementation and new technologies Provide examples of reactors with advanced passive solutions (e.g. AP1000, ESBWR). Indicate the key features of these systems. Discuss development trends in passive cooling systems for small modular reactors (SMRs). What role can nanofluids (nanofluids) play in further improving passive cooling systems? Propose a passive cooling system concept for a selected part of a nuclear power plant (e.g. heat exchanger, reactor shield), taking into account: Operating conditions (pressure, temperature). Selection of vorking material and casing. Main safety constraints. Conduct a simplified heat balance of a heat pipe system with 100 MW of thermal energy to be dissipated. Evaluate the validity of using phase change materials in passive cooling for potential reactor load fluctuations: What noperties of PCMs are crucial for dynamic temperature variations? How do you select the melting point of the material? 		 tube during heat transport? How do loop heat pipes (LHP) differ from classical heat pipes? Define the term phase change material (PCM). How can the use of PCM improve the reliability of a cooling system? Provide a diagram of how a thermosyphon works and discuss what physical phenomena enable it to
 liquid metals)? List and discuss the most important design criteria (e.g. maximum temperature, corrosion resistance, thermal properties) of a passive cooling system. What calculation methods are used to analyse the performance of passive cooling systems? In which situations is a particular method most justified? Emergency conditions and nuclear safety Present a Loss of Coolant Accident (LOCA) type of emergency scenario. What role do passive cooling systems play in it? Discuss how passive cooling systems can reduce the risk of core meltdown in an emergency without access to external electrical power. What cooling system parameters need to be monitored under emergency conditions to confirm the correct operation of passive solutions? Examples of implementation and new technologies Provide examples of reactors with advanced passive solutions (e.g. AP1000, ESBWR). Indicate the key features of these systems. Discuss development trends in passive cooling systems for small modular reactors (SMRs). What role can nanofluids (nanofluids) play in further improving passive cooling systems? Problem / practical tasks Propose a passive cooling system concept for a selected part of a nuclear power plant (e.g. heat exchanger, reactor shield), taking into account. Selection of working material and casing. Main safety constraints. Conduct a simplified heat balance of a heat pipe system with 100 MW of thermal energy to be dissipated. Evaluate the validity of using phase change materials in passive cooling for potential reactor load fluctuations: What roperties of PCMs are crucial for dynamic temperature variations? How do you select the melting point of the material? 		3. design and analysis of passive systems
 Present a Loss of Coolant Accident (LOCA) type of emergency scenario. What role do passive cooling systems play in it? Discuss how passive cooling systems can reduce the risk of core meltdown in an emergency without access to external electrical power. What cooling system parameters need to be monitored under emergency conditions to confirm the correct operation of passive solutions? Examples of implementation and new technologies Provide examples of reactors with advanced passive solutions (e.g. AP1000, ESBWR). Indicate the key features of these systems. Discuss development trends in passive cooling systems for small modular reactors (SMRs). What role can nanofluids (nanofluids) play in further improving passive cooling systems? Problem / practical tasks Propose a passive cooling system concept for a selected part of a nuclear power plant (e.g. heat exchanger, reactor shield), taking into account: Operating conditions (pressure, temperature). Selection of working material and casing. Main safety constraints. Conduct a simplified heat balance of a heat pipe system with 100 MW of thermal energy to be dissipated. Evaluate the validity of using phase change materials in passive cooling for potential reactor load fluctuations: What properties of PCMs are crucial for dynamic temperature variations? How do you select the melting point of the material? 		 liquid metals)? List and discuss the most important design criteria (e.g. maximum temperature, corrosion resistance, thermal properties) of a passive cooling system. What calculation methods are used to analyse the performance of passive cooling systems? In which
 systems play in it? Discuss how passive cooling systems can reduce the risk of core meltdown in an emergency without access to external electrical power. What cooling system parameters need to be monitored under emergency conditions to confirm the correct operation of passive solutions? Examples of implementation and new technologies Provide examples of reactors with advanced passive solutions (e.g. AP1000, ESBWR). Indicate the key features of these systems. Discuss development trends in passive cooling systems for small modular reactors (SMRs). What role can nanofluids (nanofluids) play in further improving passive cooling systems? Problem / practical tasks Propose a passive cooling system concept for a selected part of a nuclear power plant (e.g. heat exchanger, reactor shield), taking into account: Operating conditions (pressure, temperature). Selection of working material and casing. Main safety constraints. Conduct a simplified heat balance of a heat pipe system with 100 MW of thermal energy to be dissipated. Evaluate the validity of using phase change materials in passive cooling for potential reactor load fluctuations: What properties of PCMs are crucial for dynamic temperature variations? How do you select the melting point of the material? 		4 Emergency conditions and nuclear safety
 features of these systems. Discuss development trends in passive cooling systems for small modular reactors (SMRs). What role can nanofluids (nanofluids) play in further improving passive cooling systems? Problem / practical tasks Propose a passive cooling system concept for a selected part of a nuclear power plant (e.g. heat exchanger, reactor shield), taking into account: Operating conditions (pressure, temperature). Selection of working material and casing. Main safety constraints. Conduct a simplified heat balance of a heat pipe system with 100 MW of thermal energy to be dissipated. Evaluate the validity of using phase change materials in passive cooling for potential reactor load fluctuations: What properties of PCMs are crucial for dynamic temperature variations? How do you select the melting point of the material? 		 systems play in it? Discuss how passive cooling systems can reduce the risk of core meltdown in an emergency without access to external electrical power. What cooling system parameters need to be monitored under emergency conditions to confirm the correct operation of passive solutions?
 exchanger, reactor shield), taking into account: 2. Operating conditions (pressure, temperature). 3. Selection of working material and casing. 4. Main safety constraints. 5. Conduct a simplified heat balance of a heat pipe system with 100 MW of thermal energy to be dissipated. 6. Evaluate the validity of using phase change materials in passive cooling for potential reactor load fluctuations: What properties of PCMs are crucial for dynamic temperature variations? How do you select the melting point of the material? 		features of these systems.Discuss development trends in passive cooling systems for small modular reactors (SMRs).What role can nanofluids (nanofluids) play in further improving passive cooling systems?
Work placement Not applicable		 exchanger, reactor shield), taking into account: 2. Operating conditions (pressure, temperature). 3. Selection of working material and casing. 4. Main safety constraints. 5. Conduct a simplified heat balance of a heat pipe system with 100 MW of thermal energy to be dissipated. 6. Evaluate the validity of using phase change materials in passive cooling for potential reactor load fluctuations: What properties of PCMs are crucial for dynamic temperature variations? How do you select the melting
	Work placement	Not applicable

Document generated electronically. Does not require a seal or signature.