

。 GDAŃSK UNIVERSITY OF TECHNOLOGY

Subject card

Subject name and code	GENETIC ENGINEERING, PG_00066804							
Field of study	Biotechnology							
Date of commencement of studies	October 2024		Academic year of realisation of subject			2024/2025		
Education level	second-cycle studies		Subject group			Obligatory subject group in the field of study		
Mode of study	Full-time studies		Mode of delivery			at the university		
Year of study	1		Language of instruction			Polish		
Semester of study	2		ECTS credits		4.0			
Learning profile	general academic profile		Assessment form		asses	assessment		
Conducting unit	Faculty of Chemistry							
Name and surname	Subject supervisor		prof. dr hab. inż. Paweł Sachadyn					
of lecturer (lecturers)	Teachers		dr hab. inż. Anna Stanisławska-Sachadyn					
			prof. dr hab. inż. Paweł Sachadyn					
			dr Rafał Płatek					
Lesson types and methods	Lesson type	Lecture	Tutorial	Laboratory	Projec	t	Seminar	SUM
of instruction	Number of study hours	15.0	0.0	30.0	15.0		0.0	60
	E-learning hours inclu	uded: 0.0						
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study		SUM
	Number of study hours	60		5.0		35.0		100
Subject objectives	The aim of lecture is to broden the knowledge of students on genetic engineering apllications in research and industry. The aim to project is to design and perform an experiment of molecular cloning in silico . The aim of laboratory is to carry out an experiment of in vitro cloning of an animal gene to a bacterial plasmid vector.							

Learning outcomes	Course outcome	Subject outcome	Method of verification	
	[K7_W03] selects methods using living organisms and biomolecules to produce and process consumer goods	The student can select a solution in the field of genetic engineering to obtain proteins for research, medical or industrial applications	[SW3] Assessment of knowledge contained in written work and projects [SW2] Assessment of knowledge contained in presentation [SW1] Assessment of factual knowledge	
	[K7_K101] acknowledges the importance of knowledge related to the field of study in solving cognitive and practical problems, critically assessing the information obtained	Using reliable sources, the Student can find and interpret information on the development and applications of genetic engineering	[SK2] Assessment of progress of work [SK5] Assessment of ability to solve problems that arise in practice	
	[K7_U07] evaluates the possibility of commercialization of a product or technology based on the analysis of scientific publications and patents	The student is aware of ethical and bioethical requirements in the work of a biotechnologist in science and industry	[SU3] Assessment of ability to use knowledge gained from the subject [SU2] Assessment of ability to analyse information	
	[K7_U01] designs experiments in accordance with the state of the art and the latest scientific literature, using computer methods of data analysis, computer simulations	The student can design and experiment with molecular cloning with the use of a vector plasmid	[SU5] Assessment of ability to present the results of task [SU4] Assessment of ability to use methods and tools [SU3] Assessment of ability to use knowledge gained from the subject [SU1] Assessment of task fulfilment	

Subject contents	LECTURE key techniques and applications of genetic engineering
	1 Molecular cloning - vectors, inserts and ligation techniques.
	2. Genetic engineering of mammalian cells in tissue cultures.
	3. Induced pluripotent stem cells.
	4. Humanised antibodies and human antibodies.
	5. Animal genetic engineering - the technique of genetic modification of animals. Knockout and transgenic animals in research.
	6. Genome editing. CrispR and other methods. Genetic modification in selected tissues. Tissue-specific gene expression. Cre-lox method.
	7. Gene therapy - methods and challenges.
	8. Plant genetic engineering -methods, potential and challenges
	LABORATORY - in vitro cloning into a plasmid vector in E. coli cells.
	1. RNA extraction from solid tissues
	2. cDNA synthesis.
	3. PCR gene amplification on cDNA template.
	4. Plasmid DNA vector (pUC19) extraction.
	5. Insert preparation: extraction of PCR-amplified DNA fragment from an agarose gel band (gel-out).
	6. Vector and insert DNA digestion with restriction enzymes.
	7. DNA purification after enzymatic reactions (clean-up).
	8. Ligation of insert and vector DNA.
	9. Transformation of competent cells with ligation mixture. Blue-white screening on IPTG and X-Gal solid medium and culturing selected clones on liquid medium
	10. Restriction analysis of recombinant plasmids.
	PROJECT - In silico cloning.
	1. Selection of gene, template source and the nucleotide sequence for cloning

	2. Selection of restriction enzymes				
	3. Design of primers and PCR reaction for insert amplification; identification of the correct nucleotide sequence of the insert using sequence alignment				
	4. Computer simulation of vector and insert digestion and ligation				
	5. Comparison of amino acid sequences of the native and recombinant protein				
	6. Determination of MW and isoelectric point of the fusion protein				
	7. Restriction analysis design				
	8. Computer codons optimisation for	heterologous gene expression			
	9. Design and simulation of Gibson cloning				
Prerequisites and co-requisites	basics of molecular biology, genetics, and microbiology				
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade		
	molecular cloning project and presentation	60.0%	25.0%		
	final test (test of choice)	60.0%	45.0%		
	laboratory (final report, experiment results)	60.0%	30.0%		
Recommended reading	Basic literature	lecture print-outs			
	Supplementary literature	publications cited in the lecture			
	eResources addresses	Adresy na platformie eNauczanie: INŻYNIERIA GENETYCZNA - Moodle ID: 44474 https://enauczanie.pg.edu.pl/moodle/course/view.php?id=44474			

Example issues/ example questions/ tasks being completed	MOLECULAR CLONING LECTURE 1	
lasks being completed	1. Key steps of molecular cloning.	
	2. Types of vectors used in molecular cloning.	
	3. Main applications of molecular cloning.	
	4. The principle of blue-white selection.	
	5. Methods of obtaining inserts for cloning.	
	6. Artificial synthesis of insert DNA disadvantages and advantages.	
	7. Codon usage - sequence optimisation or host selection (pRARE plasmid in E. coli Rosetta).	
	8. How to obtain the full nucleotide sequence of the transcript if only part of the sequence is available - the principle of the RACE method.	
	9. Phage T4 DNA ligase - substrates, cofactor and mechanism of action.	
	10. DNA topoisomerase I as a ligase - principle of action, types of inserts.	
	11. Principles of clonase action and benefits of clonase (lambda phage integrase).	
	12. Ligase -indenpendent cloning (LIC, without DNA ligase).	
	13. Gibson cloning (Gibson assembly).	
	14. Transformation vs. transfection.	
Work placement	Not applicable	

Document generated electronically. Does not require a seal or signature.