Subject card | Subject name and code | Soil - Structure Interaction in the Design of Support Structures, PG_00066974 | | | | | | | | | |---|---|---|--|-------------------------------------|--------|--|------------|-----|--| | Subject name and code | | | | | | | | | | | Field of study | Smart Renewable Energy Engineering | | | | | | | | | | Date of commencement of studies | October 2025 | | Academic year of realisation of subject | | | 2025/2026 | | | | | Education level | second-cycle studies | | Subject group | | | Specialty subject group Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 1 | | Language of instruction | | | English | | | | | Semester of study | 2 | | ECTS credits | | | 2.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Department of Geotechnical and Hydraulic Engineering -> Faculty of Civil and Environmental Engineerin Wydziały Politechniki Gdańskiej | | | | | Engineering -> | | | | | Name and surname | Subject supervisor | | dr inż. Jakub Konkol | | | | | | | | of lecturer (lecturers) | Teachers | | | | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | of instruction | Number of study hours | 10.0 | 20.0 | 0.0 | 0.0 | | 0.0 | 30 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in
classes include
plan | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 30 | | 4.0 | | 16.0 | | 50 | | | Subject objectives | Learning basic design methods and soil-structure interactions for offshore wind foundations. | | | | | | | | | | Learning outcomes | Course out | Subject outcome Method of verification | | | | | rification | | | | | [K7_U02] is capable of creating and analyzing digital models of renewable energy systems, including wind power systems, and utilizes digital tools for project analysis, evaluation, supervision, and optimization | | | | | [SU1] Assessment of task
fulfilment
[SU4] Assessment of ability to
use methods and tools | | | | | | [K7_W04] knows the specifics of designing, constructing, and operating onshore/offshore wind farms, as well as the technical and logistical challenges involved in their implementation, including measurement and diagnostic technologies | | foundations. | | | [SW3] Assessment of knowledge contained in written work and projects [SW2] Assessment of knowledge contained in presentation [SW1] Assessment of factual knowledge | | | | | | [K7_K02] recognizes technological innovations in the field of wind energy, is ready to adapt to and implement new technologies in energy systems | | Basic knowledge in analytical and
numerical methods in foundation
design. Application of machine
learning in support of foundation
design and soil parameters
estimation. | | | [SK5] Assessment of ability to
solve problems that arise in
practice
[SK2] Assessment of progress of
work | | | | | Subject contents Prerequisites | Basic physical and mechanical properties of soil. Soil drillings and samplings for lab testing in offshore and nearshore projects. Site investigation for offshore wind development. Examples of soil characterization reports for offshore projects. Types of foundations used in offshore wind farms (OWF). Design methods used in OWF: p-y curves and PISA model. Soil constitutive behavior overview Example of monopole foundation design using p-y curves: calculation of bearing capacity and displacements. Basic knowledge and skills related to soil mechanics, concrete structures, steel structures, applied | | | | | | | | | | and co-requisites | mechanics and structural mechanics. | | | | | | | | | Data wygenerowania: 18.08.2025 12:16 Strona 1 z 2 | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | |--|--------------------------------------|--|-------------------------------|--|--|--| | and criteria | exercises - short technical problems | 50.0% | 100.0% | | | | | Recommended reading | Basic literature | Randolph, M., Gourvenec, S., White, D., & Cassidy, M. (2017) Offshore
Geotechnical Engineering | | | | | | | | Jardine, R., Chow, F., Overy, R., & Standing, J. (2005). ICP design
methods for driven piles in sands and clays (Vol. 112). London:
Thomas Telford. | | | | | | | | Arany, L., Bhattacharya, S., Macdonald, J., & Hogan, S. J. (2017). Design of monopiles for offshore wind turbines in 10 steps. Soil Dynamics and Earthquake Engineering, 92, 126-152. | | | | | | | | DNV-OS-J101-Design of offshore wind turbine structures.
Copenhagen, Denmark: DNV | | | | | | | Supplementary literature | Reese, L. C., Cox, W. R., and Koop, F. D. (1974). Analysis of Laterally Loaded Piles in Sand. Proceedings of the 6th Annual Offshore Technology Conference, OTC 2080. | | | | | | | | Cai, Y., Wu, T., Guo, L., & Wang, J. (2018). Stiffness degradation and plastic strain accumulation of clay under cyclic load with principal stress rotation and deviatoric stress variation. Journal of Geotechnical and Geo | | | | | | | | Byrne, B. W., Burd, H. J., Zdravković, L., McAdam, R. A., Taborda, D. M., Houlsby, G. T., & Gavin, K. G. (2019). PISA: new design methods for offshore wind turbine monopiles. Revue Française de Géotechnique, (158), 3. | | | | | | | eResources addresses | | | | | | | Example issues/
example questions/
tasks being completed | | | | | | | | Work placement | Not applicable | | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 18.08.2025 12:16 Strona 2 z 2