
Data wygenerowania: 21.07.2025 11:24 Strona 1 z 3

Subject card

Subject name and code Programming in High Level Languages II, PG_00067435

Field of study Automatic Control, Cybernetics and Robotics

Date of commencement of
studies

October 2025 Academic year of
realisation of subject

2026/2027

Education level first-cycle studies Subject group Obligatory subject group in the
field of study
Subject group related to scientific
research in the field of study

Mode of study Full-time studies Mode of delivery at the university

Year of study 2 Language of instruction Polish

Semester of study 3 ECTS credits 3.0

Learning profile general academic profile Assessment form assessment

Conducting unit Department of Decision Systems and Robotics -> Faculty of Electronics Telecommunications and
Informatics -> Wydziały Politechniki Gdańskiej

Name and surname
of lecturer (lecturers)

Subject supervisor dr hab. inż. Michał Czubenko
Teachers dr hab. inż. Michał Czubenko

Lesson types and methods
of instruction

Lesson type Lecture Tutorial Laboratory Project Seminar SUM
Number of study
hours

0.0 0.0 15.0 0.0 0.0 15

E-learning hours included: 0.0

Learning activity
and number of study hours

Learning activity Participation in didactic
classes included in study
plan

Participation in
consultation hours

Self-study SUM

Number of study
hours

15 4.0 56.0 75

Subject objectives The aim of the course is to introduce students to advanced programming techniques in a high-level
language that combines syntactic clarity with great flexibility in creating modern applications. During the
course, students will learn how to design and implement applications using different paradigms, with
particular emphasis on object-oriented programming and graphical components using popular windowing
frameworks (Qt or GTK). Issues related to data processing, such as serialization and deserialization, will
also be discussed. Much emphasis will be placed on mastering advanced elements of the language, such as
descriptors, decorators, protocols, functions as first-class objects, metalevel classes, and metaprogramming
techniques that allow writing more flexible and reusable code. Aspects of design patterns (factories,
singletons, adapters) will be discussed.

Data wygenerowania: 21.07.2025 11:24 Strona 2 z 3

Learning outcomes Course outcome Subject outcome Method of verification
[K6_U04] can apply knowledge of
programming methods and
techniques as well as select and
apply appropriate programming
methods and tools in computer
software development or
programming devices or
controllers using microprocessors
or programmable elements or
systems specific to the field of
study

is able to use a high-level
programming language to a
degree that allows the use of
advanced programming methods

[SU1] Assessment of task
fulfilment

[K6_U12] can analyze the
operation of components, circuits
and systems related to the field of
study, as well as measure their
parameters and examine technical
specifications, and plan and
conduct experiments related to the
field of study, including computer
simulations and measurements,
and interpret obtained results and
draw conclusions

can handle debuggers, analyze
interpreter/compiler errors and
program using tests

[SU2] Assessment of ability to
analyse information

[K6_W04] knows and
understands, to an advanced
extent, the principles, methods
and techniques of programming
and the principles of computer
software development or
programming devices or
controllers using microprocessors
or programmable elements or
systems specific to the field of
study, and organisation of
systems using computers or such
devices

can handle methods related to
metaprogramming and knows
basic design patterns

[SW1] Assessment of factual
knowledge

Subject contents The course will include 7 computer exercises related to the following topics (the list is open):

1. Object-oriented programming and application structure (consolidation of object-oriented aspects,

classes, inheritance, encapsulation, special methods, code organization)
2. Data processing - serialization and deserialization (support for formats such as JSON, CSV, Pickle,

loading and saving objects, error handling and validation)
3. Graphical programming (simple windows, supporting logic, slot signals, event handling, communication

between components, aspects of interface blocking)
4. Advanced language elements (creating meta-level classes, automatic modification of classes,

descriptors)
5. Web applications (structure of web projects, routing and HTTP support, communication between

frontend and backend)
6. REST API and testing (designing a simple REST server, unit tests)
Design patterns (singleton, factory, strategy, decorator, adapter and others)

Prerequisites
and co-requisites

• has basic knowledge of mathematics, including mathematical analysis, algebra and the principles of
spatial geometry

• can program in cpp and a selected high-level language
• knows the basic concepts of programming language syntax
• knows the basics of object-oriented programming and aspects of functional and structural programming

Assessment methods
and criteria

Subject passing criteria Passing threshold Percentage of the final grade
Lab exercise 60.0% 100.0%

Recommended reading Basic literature Allen B. Downey. Myśl w języku Python. Helion, 2025. Print.

Houlahan, Padraig. Prototyping Python Dashboards for Scientists and
Engineers: Build and Deploy a Complete Dashboard with Python. 1st
ed. Berkeley, CA: Apress L. P, 2024. Web.

Supplementary literature Lanaro, G., Nguyen, Q., & Kasampalis, S. (2019). Advanced Python
Programming: Build high performance, concurrent, and multi-threaded
apps with Python using proven design patterns. Packt Publishing Ltd.

Data wygenerowania: 21.07.2025 11:24 Strona 3 z 3

eResources addresses Basic
https://realpython.com/ - Real Python - best webpage about pure
Python
https://docs.python.org/3/ - Python docs
https://doc.qt.io/qtforpython-6/ - QT docs

Example issues/
example questions/
tasks being completed

1. Modeling a system (e.g. a library or a reservation system).
2. Implementation of a class that saves user data to a file and reads it from a file.
3. An application with a graphical input form and data validation.
4. An example of a class that dynamically creates methods.
5. A web application with a simple administration panel.
6. An interface for managing objects via API.
7. Implementation of a class that registers and manages objects (Factory).

Work placement Not applicable

Document generated electronically. Does not require a seal or signature.

