

Subject card

Subject name and code	Computer vision, PG_00053374							
Field of study	Biomedical Engineering							
Date of commencement of studies	February 2026		Academic year of realisation of subject		2026/2027			
Education level	second-cycle studies		Subject group		Optional subject group Specialty subject group Subject group related to scientific research in the field of study			
Mode of study	Full-time studies		Mode of delivery		at the university			
Year of study	1		Language of instruction		Polish			
Semester of study	2		ECTS credits		4.0			
Learning profile	general academic profile		Assessment form		exam			
Conducting unit	Department Of Biomedical Engineering -> Faculty Of Electronics Telecommunications And Informatics -> Wydziały Politechniki Gdańskiej							
Name and surname of lecturer (lecturers)	Subject supervisor		dr inż. Magdalena Mazur-Milecka					
	Teachers		dr inż. Magdalena Mazur-Milecka					
Lesson types and methods of instruction	Lesson type	Lecture	Tutorial	Laboratory	Projec	t	Seminar	SUM
	Number of study hours	30.0	0.0	15.0	15.0		0.0	60
	E-learning hours incl	uded: 0.0			•			
Learning activity and number of study hours					Self-study SUM		SUM	
	Number of study hours	60		5.0		35.0		100
Subject objectives	The aim of the course is to familiarize students with computer vision algorithms, with particular emphasis on neural networks and machine learning based methods.							

Data wygenerowania: 26.04.2025 08:11 Strona 1 z 4

Learning outcomes	Course outcome	Subject outcome	Method of verification
	[K7_W03] knows and understands, to an increased extent, the construction and operating principles of components and systems related to the field of study, including theories, methods and complex relationships between them and selected specific issues - appropriate for the curriculum	The effect of the learning process is the acquisition of knowledge by the student in the field of theories and methods dedicated to solutions to computer vision in biomedical engineering.	[SW1] Assessment of factual knowledge
	[K7_U04] can apply knowledge of programming methods and techniques as well as select and apply appropriate programming methods and tools in computer software development or programming devices or controllers using microprocessors or programmable elements or systems specific to the field of study, making assessment and critical analysis of the prepared software as well as a synthesis and creative interpretation of information presented with it	The effect of the learning process is the student's gaining the ability to use the acquired knowledge in practice on computer vision algorithms: the use of appropriate methods and tools, evaluation of their effectiveness through the use of appropriate measures and their correct interpretation.	[SU4] Assessment of ability to use methods and tools
	[K7_W04] knows and understands, to an increased extent, the principles, methods and techniques of programming and the principles of computer software development or programming devices or controllers using microprocessors or other elements or programmable devices specific to the field of study, and organization of work of systems using computers or such devices	The effect of the learning process is the student's acquisition of knowledge in the field of knowledge and the ability to apply programming methods and techniques as well as libraries used in solving computer vision issues, including detection and segmentation of objects, image recognition or classification.	[SW1] Assessment of factual knowledge
	[K7_U02] can perform tasks related to the field of study as well as formulate and solve problems applying recent knowledge of physics and other areas of science	The effect of the learning process is the ability of the student to correctly solve real problems of computer vision in the field of biomedical engineering, appropriate selection of methods and evaluation of results.	[SU1] Assessment of task fulfilment

Data wygenerowania: 26.04.2025 08:11 Strona 2 z 4

Subject contents	Introduction to computer vision				
Subject contents	1. Introduction to computer vision				
	Analysis of the texture and textu				
	Analysis of the shape and features of the shape description in images				
	4. Color / intensity analysis and rela				
	5. Methods of reduction / selection	n / selection of features, optimization			
	6. Autoencoders - image quality improvement 7. Classification of images using deep learning methods 8. Image segmentation methods				
	9. Image segmentation (semantic)				
	10. Image segmentation (instance)				
	 11. Methods of object location and detection 12. Methods of object location and detection 13. Generation of images, adversarial images, quality improvement 14. GAN models in computer vision 15. GAN models in machine learning (augmentations) 				
Prerequisites and co-requisites	Prerequisites: • in the field of theoretical knowledge - knowledge of image processing and analysis algorithms and the basics of neural networks, • in the field of practical knowledge - basics of the Python language and knowledge of libraries dedicated to image processing (e.g. OpenCV)				
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade		
and criteria	lectures	50.0%	40.0%		
	laboratory	50.0%	30.0%		
	project	50.0%	30.0%		
Recommended reading	Basic literature	 Computer Vision: Algorithms and Applications, Richard Szeliski Programming Computer Vision with Python: Tools and algorithms for analyzing images, Erik Solem Computer Vision: A Modern Approach, David Forsyth, Jean Ponce 			
	Supplementary literature	Deep Learning (Adaptive Computation and Machine Learning series), <u>Ian Goodfellow</u> , <u>Yoshua Bengio</u> , <u>Aaron Courville</u> Hands-On Machine Learning with Scikit-Learn, Keras, and			
		TensorFlow: Concepts, Tools, and Systems 2nd Edition, Aurélien Gér	Techniques to Build Intelligent		

Data wygenerowania: 26.04.2025 08:11 Strona 3 z 4

	eResources addresses	Adresy na platformie eNauczanie:		
Example issues/ example questions/ tasks being completed	Autoencoders and GAN			
	2. Object detection			
	3. Face recognition			
	4. Segmentation			
	5. Image classification - inference on mobile devices			
Work placement	Not applicable			

Document generated electronically. Does not require a seal or signature.

Data wygenerowania: 26.04.2025 08:11 Strona 4 z 4