

Subject card

Subject name and code	General Mechanics, PG_00060452								
Field of study	Mechanical and Nava	al Engineering							
Date of commencement of studies			Academic year of realisation of subject			2025/	2025/2026		
Education level	first-cycle studies		Subject group			Obligatory subject group in the field of study			
						Subject group related to scientific research in the field of study			
Mode of study	Part-time studies		Mode of delivery			at the	at the university		
Year of study			Language of instruction			Polish	Polish		
Semester of study			ECTS cred	lits		7.0			
Learning profile	general academic profile		Assessment form			exam	exam		
Conducting unit	Institute Of Mechanics And Machine Design -> Faculty Of Mechanical Engineering And Ship Technology -> Wydziały Politechniki Gdańskiej								
Name and surname	Subject supervisor		dr hab. inż. Jarosław Szwedowicz						
of lecturer (lecturers)	Teachers								
Lesson types and methods	Lesson type	Lecture	Tutorial	Laboratory	Projec	t Seminar		SUM	
of instruction	Number of study hours	27.0	27.0	9.0	0.0		0.0	63	
	E-learning hours included: 0.0								
Learning activity and number of study hours	Learning activity	Participation in didactic classes included in study plan		Participation in consultation hours		Self-study		SUM	
	Number of study hours	63		11.0		101.0		175	
Subject objectives	(1) Understanding the real structure or design concept of mechanical devices in terms of load transfer, kinematics, and dynamics. (2) Simplifying the real, mechanical system into a physical model reflecting the actual behaviour of the system under acting loads and accelerations.								
	(3) Creating a mathematical model which determines the behaviour of the mechanical system under acting loads and learning methods for solving mathematical equations.(4) Ability to measure the mechanical system and interpret the obtained experimental results.								

Data wygenerowania: 22.04.2025 11:25 Strona 1 z 5

Lagrain a sutagnasa				
Learning outcomes	Course outcome	Subject outcome	Method of verification	
	[K6_W02] possesses an organized knowledge on physics, including classic mechanics, electricity and magnetism, shows knowledge of the elements of thermodynamics	Ability to measure the mechanical system and interpret the experimental results	[SW1] Assessment of factual knowledge	
	[K6_U01] is able to acquire information from specialized literary sources, databases and other resources, essential for solving engineering tasks; is able to compile the obtained information pieces and to interpret them, additionally is able to form conclusions and present justified opinion	Defining the material and physical properties needed for the mechanical analysis of the designed device	[SU5] Assessment of ability to present the results of task [SU2] Assessment of ability to analyse information	
	[K6_U06] is able to use mathematical and physical models for analysing the processes and phenomena occurring in mechanical devices within the range of material strength, thermodynamics and fluid mechanics	Simplification of the real system to a physical model reflecting the actual behaviour of the system under acting loads. Creation of a mathematical model and learning the solution techniques for analytical modelling of the behaviour of the mechanical system under loadings.	[SU4] Assessment of ability to use methods and tools [SU3] Assessment of ability to use knowledge gained from the subject [SU1] Assessment of task fulfilment	
	[K6_W04] possesses knowledge on mechanics, including the processes of modelling mechanical systems, statics, kinematics and dynamics of rigid objects and basic knowledge on vibrations	Understanding of the real structure or design concept of mechanical devices in terms of load transfer, kinematics and dynamics.	[SW1] Assessment of factual knowledge	

Data wygenerowania: 22.04.2025 11:25 Strona 2 z 5

Subject contents	Historical overview.				
	Mechanics, its role and division.				
	1.1) Modelling in mechanics: real system, physical model, mathematical model, perfectly rigid body, material point, concentrated force.				
	1.2) Scalar and vector quantities.				
	1.3) Newton's laws.				
	1.4) Primary concepts and axioms.				
	1.5) Resultant of a convergent system of forces. Moment of force about a point and about an axis. Projection of force on the axis.				
	1.6) Resultant of two parallel forces. A pair of forces and their moment. The resultant moment of a convergent and parallel system of forces. Equivalent force systems.				
	1.7) Degrees of freedom, constraints, and their reactions. Statically determinate, indeterminate, and unstable systems.				
	1.8) Forces and their sources. Forces: active and passive, external and internal.				
	Statics.				
	2.1) Basic concepts.				
	2.2) Main force and main moment.				
	2.3) Basic conditions of equilibrium of any spatial system of forces.				
	2.4) Equilibrium conditions for special cases of force systems: plane, convergent and parallel, acting along one straight line.				
	2.5) Rule of two and rule of three.				
	2.6) Substitute equilibrium conditions.				
	2.7) Force of gravity, centre of gravity.				
	2.8) Resistance forces: sliding friction, cable friction, rolling resistance.				
	Kinematics.				
	3.1) Basic concepts of point kinematics: position, velocity and acceleration, equations of motion.				
	3.2) Description of motion in rectangular and vector coordinates.				

Data wygenerowania: 22.04.2025 11:25 Strona 3 z 5

- 3.3) Description of point motion in natural coordinates. Tangential and normal acceleration.
- 3.4) Special cases of point motion. Straight-line motion, including: uniform and uniformly accelerated, harmonic.
- 3.5) Examples Movement of the piston, crank and crosshead mechanism.
- 3.6) Movement on a plane, including: oblique projection, movement of a point around a circle and an ellipse.
- 3.7) Spatial movement

Solid kinematics.

- 4.1) Concepts: position, velocity, and angular acceleration of a solid and velocity and acceleration of a point of a solid.
- 4.2) Relationships between the velocities of points belonging to a rigid body.
- 4.3) Special cases of solid motion: translational motion and rotational motion.
- 4.4) Plane motion of a solid. Plane motion as a combination of translational and rotational motion and as rotation around a point, instantaneous centre of velocity.
- 4.5) Velocity of a point of a solid in plane motion. Theorems regarding the velocity field of a solid.
- 4.6) Acceleration of a point of a solid in plane motion. A momentary means of acceleration. Theorems regarding the acceleration field of a solid.
- 4.7) Kinematics of gears: toothed, friction, belt and planetary.

Dynamics.

- 5.1) Basic concepts of the dynamics of a material point. Differential equations of point dynamics in vector, rectangular and natural coordinates. Types of tasks in dynamics.
- 5.2) Special cases of equations: straight-line motion, oblique projection, free fall with resistance taken into account, harmonic motion, mathematical pendulum.
- 5.3) Principles of dynamics of a material point. dAlemberts principle.
- 5.4) The principle of momentum and drive. Principle of conservation of momentum.
- 5.5) The principle of twist and turn. The principle of conservation of twist.
- 5.6) Principle of energy and work. Differential form of the energy principle.
- 5.7) Principle of conservation of mechanical energy. Work of a constant force on a straight-line displacement and of a variable force on a curvilinear displacement.

Data wygenerowania: 22.04.2025 11:25 Strona 4 z 5

	5.8) The power of strength. Potential.				
	Basic concepts of solid dynamics.				
	6.1) Geometry of masses: mass, centre of mass, mass moments of inertia: polar, axial, plane and deviation.				
	6.2) Moments of inertia when transforming axle systems: translation (shift) and rotation (rotation).				
	6.3) Steiner's theorem. The main inertia system and the main moments of inertia.				
	6.4) Equations of solid dynamics in translational, rotational and plane motion.				
	6.5) Principles of solid dynamics. Drive and momentum as well as the twist and turn of a solid in translational, rotational and plane motion.				
	6.6) Kinetic energy and work of forces acting on a solid in translational, rotational and plane motion.				
	6.7) Calculation of the reaction of rotor bearings, balancing of rotors"				
	Special issues of dynamics.				
	7.1) Gyroscope, gyroscopic effect.				
	7.2) Straight and diagonal mid-collisions. Center of impact.				
	7.3) Dynamics of a system with variable mass				
Prerequisites and co-requisites	Knowledge of physics and mathematics at secondary school level, including in particular: geometry and trigonometry, vector and matrix calculus, and differential calculus (solving non-uniform differential equations of ordinary equations of the first and second order)				
Assessment methods and criteria	Subject passing criteria	Passing threshold	Percentage of the final grade		
	Basic literature	56.0% Witthrodt F., Sawiak S.: General Me	200.0%		
Recommended reading		polish: Mechanika ogólna. Teoria i zadania). Wydawnictwo Politechniki Gdańskiej, Gdańsk, 2020 (wyd. VII)			
	Supplementary literature	mentary literature Nizioł J.: Methodology for solving problems in mechanics (in polish: Metodyka rozwiązywania zadań z mechaniki). WNT, Warszawa, 200			
	eResources addresses Adresy na platformie eNauczanie:				
Example issues/ example questions/ tasks being completed	Excercise 1Calculate the natural frequency and period of oscillation of a mathematical pendulum with mass "m" and length "L".Exercise 2Calculate the polar geometric moment of inertia of an isosceles triangle with side length "H" relative to one of its vertices, if a hole with a diameter "H/4" is made in the geometric center of the triangle.Task 3A 65 kg skater stands on the ice and holds a 1 kg ball. Suddenly he throws the ball in front of him with a speed of 25 m/s. Calculate the opposite speed of the skater after throwing the ball.				
Work placement	Not applicable				

Document generated electronically. Does not require a seal or signature.

Data wygenerowania: 22.04.2025 11:25 Strona 5 z 5