Subject card | Subject name and code | CHEMOMETRY AND METHODOLOGY OF EXPERIMENTAL RESEARCH, PG_00063460 | | | | | | | | | |---|---|--|---|-------------------------------------|--------|---|---------|-----|--| | Field of study | Biotechnology | | | | | | | | | | Date of commencement of studies | October 2025 | | Academic year of realisation of subject | | | 2025/2026 | | | | | Education level | second-cycle studies | | Subject group | | | Obligatory subject group in the field of study Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | | Semester of study | 2 | | ECTS credits | | | 3.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Department Of Pharmaceutical Technology And Biochemistry -> Faculty Of Chemistry -> Wydziały Politechniki Gdańskiej | | | | | | | | | | Name and surname | Subject supervisor | | dr hab. inż. Tomasz Laskowski | | | | | | | | of lecturer (lecturers) | Teachers | | | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | | Number of study hours | 15.0 | 0.0 | 30.0 | 0.0 | | 0.0 | 45 | | | | E-learning hours included: 0.0 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in didactic classes included in study plan | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 45 | | 10.0 | | 20.0 | | 75 | | | Subject objectives | The aim of this course is to familiarize Student with the methodological principles of experimental work, optimal experimental planning and data processing, using both statistical and chemometric approach. | | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | [K7_U05] proposes solutions to technological and scientific problems in biotechnology and related fields using experimental methods and bioinformatics, statistics and specialized databases | | The student is able to formulate a problem for a given dataset and subsequently solve it using appropriately selected statistical and chemometric techniques. | | | [SU1] Assessment of task fulfilment [SU2] Assessment of ability to analyse information [SU3] Assessment of ability to use knowledge gained from the subject [SU4] Assessment of ability to use methods and tools [SU5] Assessment of ability to present the results of task | | | | | | [K7_W04] selects methods of data analysis, including bioinformatics, statistical and molecular modeling, useful for solving technological and scientific problems in biotechnology and related fields | | The student is able to apply various chemometric and statistical techniques depending on the quality of the data and the nature of the problem. | | | [SW1] Assessment of factual
knowledge
[SW2] Assessment of knowledge
contained in presentation | | | | | | [K7_K03] understands the social role and importance of providing reliable information and opinions to the public | | The student learns basic and advanced statistical and chemometric methods and understands when to apply each approach. | | | [SK2] Assessment of progress of
work
[SK5] Assessment of ability to
solve problems that arise in
practice | | | | | Subject contents | Introduction to chemometrics and methodology of experimental work. Basics of both and the differences between statistical and chemometric approach. Archivization and data control. Analysis of single variables. Statistical probe vs. general population. Variables' distribution. Graphical representation of the distributions. Histogram, quantum plot. Statistical tests: outliers and errors. Parametric and non-parametric comparison of general populations. Variance analysis. Variables in pairs. Correlation & determination coefficients. Entropy of a distribution. Dependency linearization. Introduction to chemometric approach: specific transformations of the variables. Exploratory analysis: analysis of similarities. Distance matrices. Cluster analysis. Exploratory analysis: factorial analysis. Information. Principal component analysis. When chemometrics meets statistics: dependence modelling. Linear regression, statistical relevancy and quality of chemometric models. | | | | | | |--|--|--|-------------------------------|--|--|--| | Prerequisites and co-requisites | Advanced usage of a spreadsheet. Basic Python programming. Basic statistics. | | | | | | | Assessment methods and criteria | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | | exam | 60.0% | 40.0% | | | | | | project | 50.0% | 20.0% | | | | | | reports from laboratory classes | 60.0% | 40.0% | | | | | Recommended reading | Basic literature | Chemometria praktyczna, Jan Mazerski, Wydawnictwo Malamut. Statystyczna analiza wyników doświadczalnych, Jan Mazerski, Wydawnictwo Politechniki Gdańskiej. | | | | | | | Supplementary literature | - | | | | | | | eResources addresses | Adresy na platformie eNauczanie: | | | | | | Example issues/
example questions/
tasks being completed | A Student has to prepare a dataset, state a problem for these data and solve the problem, using properly selected chemometric and statistical techniques. | | | | | | | Work placement | Not applicable | | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 22.04.2025 12:05 Strona 2 z 2