

GDAŃSK UNIVERSITY

Subject card

Field of study Nuclear Engineering Date of commencement of studies February 2028 Academic year of realisation of subject 2026/2027 Education level second-cycle studies Subject group Specialty subject group related to as or research in the field of stud Mode of study Full-time studies Mode of delivery at the university Year of study 1 Language of instruction Polish Semester of study 2 ECTS creditis 2.0 Learning profile general academic profile Assessment for assessment Conducting unit Division of Heating Vertilation Air Conditioning and Refrigeration -> Institute of Energy -> Faculty of Mechanical Engineering and Stip Technology -> Wydraby Politechnic Guaristice Lesson types and methods of instruction Lesson type Lecture Tutorial Laboratory Project Seminar SUM Learning activity and number of study hours Learning activity Participation in consultation hours Self-study SUM Subject objectives Education of students in the field of thermohydraulic issues of nuclear reactors. SUM Learning outcommes Course outcomme Subject o	Subject name and code	Thermohydraulics of	nuclear reactor	s, PG_000658	99				
Date of commencement of studies February 2026 Academic year of realisation of subject 2026/2027 Education level second-cycle studies Subject group Subject group Subject group Subject group Mode of study Full-time studies Mode of delivery at the university Periate to so research in the field of stud Semester of study 1 Larguage of instruction Polish Conducting unit Oneston of Heating Ventilation Air Conditioning and Perforgaration -> Institute of Energy >> Faculty of Mechanical Engineering and Ship Technology >> Wydziky Politichniki Gdańskie Name and sumame of lecturer (lecturers) Subject supervisor dr hab. inz. Jan Wajs Ereson types and methods to instruction Lesson types and methods Lesson types and methods Lesson types and methods Subject objectives Subject objectives Subject outcome Subject outcome Subject outcome Subject outcome Subject outcome Method of ventilcalin para Subject outcome Subject outcome <td< td=""><td>, , , , , , , , , , , , , , , , , , ,</td><td>Nuclear Engineering</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	, , , , , , , , , , , , , , , , , , ,	Nuclear Engineering							
Conjust group Subject	Date of commencement of	February 2026				2026/2027			
Nonce of bodies Poilsh Year of study 1 Language of instruction Poilsh Semester of study 2 ECTS credits 2.0 Learning profile general academic profile Assessment form assessment Conducting unit Division of Heating Ventilation At Conditioning and Refrigeration -> Institute of Energy -> Faculty of Mechanical Engineering and Ship Technology -> Wydzialy Politechniki Gdardskie Name and sumame Studject supervisor dr hab. inz. Jan Wajs Teachers Lesson types and methods Lesson type Lecture Tutorial Laboratory Project Seminar SUM Number of study hours Learning hours included: 0.0 0.0 <td>Education level</td> <td colspan="2">second-cycle studies</td> <td colspan="3"></td> <td colspan="3">Specialty subject group Subject group related to scientific research in the field of study</td>	Education level	second-cycle studies					Specialty subject group Subject group related to scientific research in the field of study		
Semester of study 2 ECTS credits 2.0 Learning profile general academic profile Assessment form assessment Conducting unit Division of Heating Ventilation Air Conditioning and Refrigeration >> Institute of Energy >> Faculty of Mechanical Engineering and Ship Technology -> Wycziay Politechnik Gdanskie) Name and surmame of lecturer (lecturers) Subject supervisor dr hab. in2. Jan Wajs Teachers Lesson types and methods Lesson types included: 0.0 Learning activity Learning activity Participation in didactic plan Sulf Learning activity and number of study hours Education of students in the field of thermohydraulic issues of nuclear reactors. Sulf (St) Assessment of ability solve problems that arise in consultation hours Self-study SUM Subject objectives Education of students in the field of thermohydraulic issues of nuclear reactors. Subject outcome Method of verification of acquired knowledge in student son work, using reliable solve problems that arise in solving difficulties with individual problem achines of an uclear power plant [SV1] Assessment of facuation and materials for reactors, systems and devices of nuclear power plant mathematical models to analysis of selection and analytical, simulation, and exprired to processes in nuclear fractors work and materials for reactors, systems and devices of nuclear power plant derergy components of a nuclear fractors mathematical models to analysis of s	Mode of study	Full-time studies							
Construction Construction essessment Learning profile general academic profile Assessment form essessment Conducting unit Division of Heating Ventilation Air Conditioning and Refrigeration 3- Institute of Energy -> Faculty of Mechanical Engineering and Ship Technology -> Wydziaky Politechniki Gdariskiej Name and surname of lecturer (lecturers) Subject supervisor dr hab. inz. Jan Wajs Lesson types and methods Lesson type Lecture Tutorial Laboratory Project Seminar SUM Notars Learning pours included: 0.0 D 0.0	Year of study								
Conducting unit Division of Heating Ventilation Air Conditioning and Refrigeration >> Institute of Energy -> Faculty of Mechanical Engineering and Ship Technology -> Wydziały Politechniki Gdańskiej Name and surname of lecturer (lecturers) Subject supervisor dr hab. inz. Jan Wajs Lesson types and methods of instruction Lesson type Lecture Tutorial Laboratory Project Seminar SUM Learning activity and number of study hours Learning activity learning activity Learning activity pain Participation in classes included in study plan Participation in classes included in study plan Self-study SUM Subject objectives Education of students in the field of thermohydraulic issues of nuclear reactors. Self-study SUM Learning outcomes Course outcome Subject outcome Method of verificator of nicical verification of acquired inficulties with individual problem solving Subject outcome Swipe problems that arise in practice Swipe problems that arise in practice Virg. Y011 explains and describes, based on general knowledge in the physics of processes, structure Power Technologies, the physics of processes, fuels and realiste for reactors, systems, machines and devices of a nuclear power plant Is able to use the laws of physics learned in the analysis of selected analysis disected in dustries and realise for reacords, systems, machines and devices of a nuclear power p	Semester of study								
Mame and sumame of lecturer (lecturers) Subject supervisor dr hab. in2. Jan Wajs Lesson types and methods of instruction Lesson type Lecture Tutorial Laboratory Project Seminar SUM Learning activity and number of study hours Learning activity Participation in didactic plan Participation in didactic consultation hours Self-study SUM Subject objectives Learning activity and number of study hours Learning activity plan Participation in didactic consultation hours Self-study SUM Subject objectives Education of study hours 30 5.0 15.0 50 Subject objectives Education of study hours 30 5.0 15.0 50 Learning outcomes Education of study protessional acting, the need for critical verifies acquired rinowidege and consulting experi- ophion in case of facquired romedificulty erifies the results of of notessional acting, the need for student own work, using reliable sources of information SW1 Assessment of facture sources of information SW1 Assessment of facture invowidege and consulting experi- sources in general knowledge in the field of scientific disciplines forming the theoretical foundegies, the physics of processes, systems, machines and devices of a nuclear reactors, systems, machines and devices of a nuclear reactors, systems, machines and devices o	Learning profile								
of lecturer (lecturers) Teachers Lesson types and methods of instruction Lesson type Lecture Tutorial Laboratory Project Seminar SUM Number of study hours 15.0 0.0 0.0 0.0 0.0 30 Learning activity and number of study hours Learning activity Participation in didactic classes included in study plan Participation in consultation hours Self-study SUM Subject objectives Education of students in the field of thermohydraulic issues of nuclear reactors. Subject outcome Method of verification of professional acting, the need for oritical verification of acquired knowledge and consulting experts opinion in case of facing difficulties with individual problem solving ISAU Assessment of factua knowledge ISAU Assessment of factua knowledge If (7_VU1) explains and describes, based on general knowledge in the field of scientific diopines forming the theoretical foundations of Nuclear Power Technologies, structure, principle of operation, operation, safety aspects, tuels and materials for reactors, systems, machines and describes, structure, principle of operation, operation, safety aspects, tuels and anterials or reactors Is able to use the laws of physics learned in the analysis of selected thermohydraulic processes in nuclear reactors ISU2] Assessment of taking in nuclear power selor and related industries Subject contents Recture: thermody	Conducting unit	Division of Heating Ventilation Air Conditioning and Refrigeration -> Institute of Energy -> Faculty of							culty of
Lesson types and methods of instruction Lesson type Lecture Tutorial Laboratory Project Seminar SUM Mumber of study and number of study hours Learning hours included: 0.0 15.0 0.0 0.0 0.0 0.0 30 Learning activity and number of study hours Learning activity plan Participation in didactic classes included in study plan Participation in consultation hours Self-study SUM Subject objectives Education of students in the field of thermohydraulic issues of nuclear reactors. Self-study SUM Learning outcomes Course outcome Subject outcome Method of verification critical verification of acquired knowledge and consulting experis- opinion in case of facing difficulties with individual problem solving IK7_V11 is aware of importance of professional acting cloundations on general knowledge in the field of scientific disciplines forming the theoretical foundations of Nuclear Power Technologies, the physics of processes, structure, principle of operation, operation, safety aspects, fuels and materials for reactors, systems, machines and devices of a nuclear power sects or and related industries Is able to use the laws of physics learned in the analysis of selected thermohydraulic processes in nuclear reactor SU2] Assessment of tability analyse information (SU1] Assessment of tability analyse information Subject contents Reture, thermodynamic aspe									
of instruction Number of study hours 15.0 15.0 0.0 0.0 0.0 30 Learning activity and number of study hours Learning activity plan Participation in didactic classes included in study plan Participation in classes included in study plan Participation in consultation hours Self-study SUM Subject objectives Education of students in the field of thermohydraulic issues of nuclear reactors. Education of acquired for professional activity plan Subject outcome Method of verification (SK5) Assessment of ability or ticleal verification of acquired for professional activity experts ophion in case of facing difficulties of on general knowledge in critical verification of acquired formation defines the principles of conservation of mass, momentum, and energy, explains the mechanisms of heat transfer in knowledge [SW1] Assessment of facture knowledge [K7_U01] utilizes acquired an alytical, simulation, and experimental methods, as well as and materials for reactors, systems, machines and devices of a nuclear power plant is able to use the laws of physics and energy, explains the mechanisms of heat transfer in knowledge [SU2] Assessment of ability analyse information Subject contents Subject contents is able to use the laws of physics and evaluate processes coruring in nuclear power plant is able to use the laws of physics and evaluate processes coruring in nuclear reactor, heat conduction in the elements, heat transfer and hydraulic resistance coolant flow under single-phase forced convection o coolant, sheat t	of lecturer (lecturers)	Teachers	I		1	-			
hours Learning hours included: 0.0 Learning activity and number of study hours Learning activity Patricipation in didactic classes included in study plan Participation in didactic classes included in study plan Setf-study SUM Subject objectives Education of students in the field of thermohydraulic issues of nuclear reactors. Solicit context Method of verification of professional acting, the need for critical verification of acquired knowledge and consulting experts option in case of facting difficulties with individual problem for Mulear Power Technologies, the physics of processes, structure, principle of opcesses, the physics of processes, the physics of processes, structure, principle of opcesses, and materials for reactors, systems, machines and describes and materials for reactors, systems, machines and describes and vealuate processes corumn in nuclear power plant ISU2 Assessment of facture knowledge Subject contents Subject contents Is able to use the laws of physics and materials for acquired inclear prover sector and related industries to analyse and wealuate processes of an uclear power plant ISU2 Assessment of facture knowledge Subject contents Subject contents Is able to use the laws of physics in nuclear power sector and related industries for reactors, system thermatical models to analyse and experimental methods, as well as mathematical models to analyse and evaluate processes of an related industries Is able to use the laws of physics is able to use the laws of physics and sective thermodynamic aspects of nuclear powere plant operation, coolants and their properties, heat sources i					, , , , , , , , , , , , , , , , , , ,		t		SUM
Learning activity and number of study hours Learning activity plan Participation in didactic classes included in study plan Participation in consultation hours Self-study SUM Subject objectives Education of students in the field of thermohydraulic issues of nuclear reactors. Iso 50 Learning outcomes [K7_K11] is aware of importance of professional acting, the need for critical verification of acquired knowledge and consulting experts opinion in case of facing difficulties with individual problem solving certically verifies the results of student own work, using reliable sources of information [SK5] Assessment of ability solve problems that arise in practice [K7_W10] explains and describes, based on general knowledge in the field of scientific disciplines forming the theoretical foundations of Nuclear Power Technologies structure, principle of operation, operation, safety aspects, fuels and materials for reactors, systems, machines and devices of a nuclear power plant is able to use the laws of physics the physics of processes, structure, principle of operation, operation, safety aspects, fuels and materials for reactors, systems, machines and devices of a nuclear power sector and related inclustries is able to use the laws of physics the physics of processes occurring in nuclear power sector and related inclustries [SU2] Assessment of ability analyse information [SU1] Assessment of task tufilment Subject contents <i>Ecture</i> : thermodynamic aspects of nuclear reactor, sources in a nuclear power sector and related inclustries is able to use the laws of physics teared in the analysics of	of instruction	hours		15.0	0.0	0.0		0.0	30
and number of study hours classes included in study plan consultation hours Number of study hours 30 5.0 15.0 50 Subject objectives Education of students in the field of thermohydraulic issues of nuclear reactors. Method of verification of professional acting, the need for student own work, using reliable sources of information Method of verification of professional acting, the need for student own work, using reliable sources of information Subject outcome Method of verification of student own work, using reliable sources of information [K7_W01] explains and describes, based on general knowledge in solving defines the principles of conservation of mass, momentum, in the field of scientific disciplines forming the theoretical foundations of Nuclear Power Technologies, the physics of processes, structure, principle of operation, operation, safety aspects, fuels and metrials for reactors, systems, machines and devices of a nuclear power plant is able to use the laws of physics and evaluate processes occurring in nuclear power sector and related industries [SU2] Assessment of tability analyse information Subject contents <i>lecture:</i> thermodynamic aspects of nuclear power plant is able to use the laws of physics and evaluate processes occurring in nuclear power sector and related industries is able to use the laws of physics and evaluate processes occurring in nuclear power sector and related industries [SU2] Assessment of task fulfilment Subject contents <i>lecture:</i> thermodynamic aspects of nuclear p		-							
hours Learning outcomes Education of students in the field of thermohydraulic issues of nuclear reactors. Learning outcomes Course outcome Subject outcome Method of verification [K7_K11] is aware of importance of professional acting, the need for critical verification of acquired knowledge and consulting experts opinion in case of facing difficulties with individual problem solving Sk5] Assessment of ability solve problems that arise in practice [K7_W01] explains and describes, based on general knowledge in the field of scientific disciplines of Nuclear Power Technologies, the physics of processes, structure, principle of operation, operation, safet sapects, systems, machines and devices of a nuclear power plant defines the principles of nuclear power plant [SW1] Assessment of facture knowledge [K7_U01] utilizes acquired analytical, simulation, and experimental methods, as well as mathematical models to analyse and evaluate processes courring in nuclear power sector and telated industries is able to use the laws of physics is able to use the laws of physics is able to use the laws of physics in clear reactors [SU2] Assessment of ability analyse information [SU1] Assessment of task fulfilment Subject contents lecture: thermodynamic aspects of nuclear power plant exercises: calculation of the analyses of heat transfer and hydraulic resistance on colant flow under single-phase forced convection conditions, heat transfer under coolant boiling con contical heat flux, residual heat, thermal-flow processes under reactor failure conditions exercises: calculation of themprature distribution in core elements, determination of heat transfe	Learning activity and number of study hours	Learning activity	classes includ				Self-study		SUM
Learning outcomes Course outcome Subject outcome Method of verification Learning outcomes [K7_K11] is aware of importance of professional acting, the need for critical verification of acquired knowledge and consulting experts opinion in case of facing difficulties with individual problem solving critically verifies the results of student own work, using reliable sources of information [SK5] Assessment of ability solve problems that arise in practice [K7_W01] explains and describes, based on general knowledge in the field of scientific disciplines forming the theoretical foundations of Nuclear Power Technologies, the physics of processes, the physics of processes, the physics of processes, the physics of processes, the physics and devices of a nuclear power plant defines the principles of conservation of a nuclear power plant [SU2] Assessment of factual navigue and materials for reactors, systems, machines and devices of a nuclear power sector and related industries is able to use the laws of physics learned in the analysis of selected thermohydraulic processes in nuclear reactors [SU2] Assessment of task fulfilment Subject contents Iecture: thermodynamic aspects of nuclear power plant operation, coolants and their properties, heat sources in a nuclear reactor, heat conduction in fuel elements, heat transfer and hydraulic resistance oritical heat flux, residual heat, thermal-flow processes under reactor failure conditions exercises: calculation of the prature distribution in core elements, determination of heat transfer coeff in single-phase forced convection ocolant, determination of heat transfer coeff in single-phase forced convection colant, determination of heat transfer coefficient during boili			30	5.0			15.0		50
[K7_K11] is aware of importance of professional acting, the need for critical verification of acquired knowledge and consulting experts opinion in case of facing difficulties with individual problem solving critically verifies the results of student own work, using reliable sources of information [SK5] Assessment of ability solve problems that arise in practice [K7_W01] explains and describes, based on general knowledge in forming the theoretical foundations of Nuclear Power Technologies, the physics of processes, structure, principle of operation, operation, safety aspects, fuels and materials for reactors, systems, machines and devices of a nuclear power plant defines the pinciples of conservation of mass, momentum, and energy, explains the mechanisms of heat transfer in key components of a nuclear power plant [SU2] Assessment of ability analyse information [K7_U01] utilizes acquired analytical, simulation, and experimental methods, as well as mathematical models to analyse and evaluate processes occurring in nuclear power search and related industries is able to use the laws of physics learned in the analysis of selected hermohydraulic processes in nuclear reactors [SU2] Assessment of ability analyse information [SU1] Assessment of task fulfilment Subject contents fecture: thermodynamic aspects of nuclear power plant operation, coolants and their properties, heat sources in a nuclear reactor, heat conduction in fuel elements, heat transfer and hydraulic resistance coolant flow under single-phase forced convection of conditions, heat transfer coefficient during boling, or ritical heat flux, residual heat, thermal-flow processes under reactor failure conditions exercises: calculation of temperature distribututon in core elements, determination of heat transfer coef	Subject objectives	Education of students	in the field of	thermohydrauli	ic issues of nuc	clear rea	actors.		
of professional acting, the need for critical verification of acquired knowledge and consulting experts opinion in case of facing difficulties with individual problem solving sources of information solve problems that arise in practice [K7_W01] explains and describes, based on general knowledge in the field of scientific disciplines forming the theoretical foundations of Nuclear Power Technologies, the physics of processes, structure, principle of operation, operation, safety aspects, fuels and materials for reactors, systems, machines and devices of a nuclear power plant defines the principles of conservation of mass, momentum, and energy; explains the mchanisms of heat transfer in key components of a nuclear power plant [SW1] Assessment of factuat knowledge [K7_U01] utilizes acquired analytical, simulation, and experimental methods, as well as mathematical models to analyse and evaluate processes corurring in nuclear power plant is able to use the laws of physics learned in the analysis of selected thermohydraulic processes in nuclear reactors [SU1] Assessment of ability analyse information [SU1] Assessment of task fulfilment Subject contents <i>lecture</i> : thermodynamic aspects of nuclear power plant operation, coolants and their properties, heat sources in a nuclear reactor, heat conduction in fuel elements, heat transfer and hydraulic processes and evaluate processes of cred convection in core elements, heat transfer under coolant boiling con critical heat flux, residual heat, thermal-flow processes under reactor failure conditions exercises: calculation of temperature distribution in core elements, determination of heat transfer coefficient during boiling.	Learning outcomes	Course outcome Subject outcome Method of verification							erification
based on general knowledge in the field of scientific disciplines forming the theoretical foundations of Nuclear Power Technologies, the physics of processes, structure, principle of operation, operation, safety aspects, fuels and materials for reactors, systems, machines and devices of a nuclear power plantconservation of mass, momentum, and energy; explains the mechanisms of heat transfer in key components of a nuclear power plantknowledge[K7_U01] utilizes acquired analytical, simulation, and experimental methods, as well as mathematical models to analyse and evaluate processes occurring in nuclear power sector and related industriesis able to use the laws of physics learned in the analysis of selected hermohydraulic processes in nuclear reactors[SU2] Assessment of ability analyse information [SU1] Assessment of task fulfilmentSubject contentslecture: thermodynamic aspects of nuclear power plant operation, coolants and their properties, heat sources in a nuclear reactor, heat conduction in fuel elements, heat transfer and hydraulic resistance of coolant flow under single-phase forced convection of coolant, determination of heat transfer coefficient during boiling, exercises: calculation of temperature distribution in core elements, determination of heat transfer coefficient during boiling, in single-phase forced convection of coolant, determination of heat transfer coefficient during boiling,		of professional acting, the need for critical verification of acquired knowledge and consulting experts opinion in case of facing difficulties with individual problem		student own work, using reliable					
analytical, simulation, and experimental methods, as well as mathematical models to analyse and evaluate processes occurring in nuclear power sector and related industrieslearned in the analysis of selected thermohydraulic processes in nuclear reactorsanalyse information [SU1] Assessment of task fulfilmentSubject contentslearned in the analysis of selected thermohydraulic processes occurring in nuclear power sector and related industrieslearned in the analysis of selected thermohydraulic processes in nuclear reactorsanalyse information [SU1] Assessment of task fulfilmentSubject contentslearned industrieslearned in the analysis of selected thermohydraulic processes in nuclear reactorsanalyse in sources in a nuclear sector, heat conduction in fuel elements, heat transfer and hydraulic resistance of coolant flow under single-phase forced convection conditions, heat transfer under coolant boiling cond critical heat flux, residual heat, thermal-flow processes under reactor failure conditions exercises: calculation of temperature distribution in core elements, determination of heat transfer coefficient during boiling, in single-phase forced convection of coolant, determination of heat transfer coefficient during boiling,		based on general knowledge in the field of scientific disciplines forming the theoretical foundations of Nuclear Power Technologies, the physics of processes, structure, principle of operation, operation, safety aspects, fuels and materials for reactors, systems, machines and devices of		conservation of mass, momentum, and energy; explains the mechanisms of heat transfer in key components of a nuclear			[SW1] Assessment of factual knowledge		
sources in a nuclear reactor, heat conduction in fuel elements, heat transfer and hydraulic resistance of coolant flow under single-phase forced convection conditions, heat transfer under coolant boiling condicient like the second se		analytical, simulation, and experimental methods, as well as mathematical models to analyse and evaluate processes occurring in nuclear power sector and		learned in the analysis of selected thermohydraulic processes in			[SU1] Assessment of task		
	Subject contents	sources in a nuclear reactor, heat conduction in fuel elements, heat transfer and hydraulic resistance during coolant flow under single-phase forced convection conditions, heat transfer under coolant boiling conditions, critical heat flux, residual heat, thermal-flow processes under reactor failure conditions <i>exercises</i> : calculation of temperature distribution in core elements, determination of heat transfer coefficient in single-phase forced convection of coolant, determination of heat transfer coefficient during boiling,							
Prerequisites thermodynamics, fluid mechanics, heat transfer and co-requisites thermodynamics, fluid mechanics, heat transfer		, ,							

Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade		
and criteria	colloquium	56.0%	40.0%		
	written assessment of the lecture	56.0%	60.0%		
Recommended reading	Basic literature Brennen C.E.: Thermo-hydraulics of nuclear reactors. Cambridge University Press, 2016 Zohuri B.: Thermal-hydraulic analysis of nuclear reactors, Springer, 2017				
	Supplementary literature	Todreas N.E., Kazimi M.S.: Nuclear systems I, Thermal hydraulic fundamentals, Taylor & Francis, 1993			
	eResources addresses				
Example issues/ example questions/ tasks being completed	Methods of determining heat transfer coefficients. Methods of determining pressure losses in an installation. Methods of heat transfer.				
Work placement	Not applicable				

Document generated electronically. Does not require a seal or signature.