Subject card | Subject name and code | Mass spectrometry in laboratory practice, PG 00069266 | | | | | | | | | | |---|---|---|---|-------------------------------------|--------|---|---------|-----|--|--| | Field of study | Chemistry | | | | | | | | | | | Date of commencement of studies | February 2025 | | Academic year of realisation of subject | | | 2025/2026 | | | | | | Education level | second-cycle studies | | Subject group | | | | | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | | | Semester of study | 2 | | ECTS credits | | | 3.0 | | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | | Conducting unit | Department of Analyt | ical Chemistry | -> Faculty of Chemistry -> Wydziały Politechniki Gdańskiej | | | | | j | | | | Name and surname | Subject supervisor | | dr inż. Tomasz Majchrzak | | | | | | | | | of lecturer (lecturers) | Teachers | | | | | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | | of instruction | Number of study hours | 5.0 | 0.0 | 35.0 | 5.0 | | 0.0 | 45 | | | | | E-learning hours included: 0.0 | | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in
classes include
plan | | Participation in consultation hours | | Self-study | | SUM | | | | | Number of study hours | 45 | | 5.0 | | 25.0 | | 75 | | | | | mass spectrometers | and the analysi | to prepare students to solve real-life problems related to the operation and use of the analysis of data obtained during mass spectrometry measurements. The tudents for work in a modern chemical analysis laboratory. | | | | | | | | | Learning outcomes | Course outcome | | Subject outcome | | | Method of verification | | | | | | | [K7_U05] analyzes the functioning of devices, equipment and technological lines used in laboratories and the chemical industry | | The student has basic skills in how mass spectrometers work and their various parts. | | | [SU4] Assessment of ability to
use methods and tools
[SU3] Assessment of ability to
use knowledge gained from the
subject | | | | | | | [K7_K101] acknowledges the importance of knowledge related to the field of study in solving cognitive and practical problems, critically assessing the information obtained | | The student has acquired practical skills in obtaining mass spectrometry information and critically evaluates this information. | | | [SK5] Assessment of ability to solve problems that arise in practice | | | | | | | [K7_K02] is able to cooperate and work in a group, taking on different roles | | The student possessed practical skills in working in a project group. | | | [SK1] Assessment of group work skills | | | | | | | [K7_U02] prepares detailed documentation of the results of independently conducted experiments and analyzes the obtained results, uses professional vocabulary with understanding and prepares and communicates information | | The student is skilled in obtaining and processing useful data from mass spectrometer work and correctly presents the results of their work. | | | [SU2] Assessment of ability to
analyse information
[SU5] Assessment of ability to
present the results of task | | | | | | | [K7_W02] identifies analytical techniques appropriate for solving specific analytical tasks – also in the production plant | | The student knows the use of various commercial solutions in mass spectrometry. | | | [SW1] Assessment of factual
knowledge
[SW3] Assessment of knowledge
contained in written work and
projects | | | | | | Subject contents | Basic terminology: charge, mass, m/z, resolution, mass defect, isotopic distribution Mass spectrometer design The impact of ionisation methods on analysis efficiency Turning the mass spectrometer on and off Replacement and maintenance of selected mass spectrometry components Optimisation of device operation Coupling mass spectrometry with chromatography Tandem mass spectrometry Mass spectrum analysis Spectral signal processing (baseline determination, noise reduction, obtaining centroid and isotopic distribution spectra, deconvolution) Overview of the application of mass spectrometry in measuring devices Troubleshooting | | | | | | |--|--|---|-------------------------------|--|--|--| | Prerequisites and co-requisites | | | | | | | | Assessment methods and criteria | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | | Laboratory | 60.0% | 40.0% | | | | | | Project | 60.0% | 60.0% | | | | | Recommended reading | Basic literature | Danikiewicz, Witold. Spektrometria mas. Wydawnictwo Naukowe PWN, 2021. Silverstein, Robert Milton, et al. Spektroskopowe metody identyfikacji związków organicznych. Wydawnictwo Naukowe PWN, 2012. | | | | | | | Supplementary literature | Marketing materials from device manufacturers and the latest publications in reputable specialist journals. | | | | | | | eResources addresses | | | | | | | Example issues/
example questions/
tasks being completed | How to increase the resolution capabilities of a mass spectrometer? What information about the structure of a chemical compound can be obtained from an MS spectrum? What is MRM? What are the differences between the construction of a quadrupole analyser and an ion trap? What consequences can too low/high ionisation energy have for ionisation? How to prepare data from a mass spectrometer for bioinformatic analysis? In what situations do we use an isotope-labelled internal standard? How might changing the ionisation mode in ESI affect the analysis? | | | | | | | Work placement | Not applicable | | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 06.08.2025 10:33 Strona 2 z 2