Subject card | Subject name and code | Introduction to computer graphics and computational geometry, PG_00069495 | | | | | | | | | |---|--|--|---|-------------------------------------|-------------------|--|---------|-----|--| | Field of study | Mathematics | | | | | | | | | | Date of commencement of studies | October 2025 | | Academic year of realisation of subject | | | 2025/2026 | | | | | Education level | second-cycle studies | | Subject group | | | Specialty subject group Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | Mode of delivery | | | at the university | | | | | | Year of study | 1 | | Language of instruction | | | Polish | | | | | Semester of study | 1 | | ECTS credits | | | 4.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Divison of Nonlinear Analysis -> Institute of Applied Mathematics -> Faculty of Applied Physics and Mathematics -> Wydziały Politechniki Gdańskiej | | | | | | | | | | Name and surname of lecturer (lecturers) | Subject supervisor | | dr inż. Jakub Maksymiuk | | | | | | | | | Teachers | | dr inż. Jakub Maksymiuk | | | | | | | | Lesson types and methods of instruction | Lesson type | Lecture | Tutorial | Laboratory | Projec | t | Seminar | SUM | | | | Number of study hours | 30.0 | 0.0 | 30.0 | 0.0 | | 0.0 | 60 | | | | E-learning hours included: 0.0 | | | | | | | | | | | eNauczanie source addresses: Moodle ID: 45003 WdGKiGO [2025/26] https://enauczanie.pg.edu.pl/moodle/course/view.php?id=45003 | | | | | | | | | | Learning activity and number of study hours | Learning activity | Participation in didactic classes included in study plan | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 60 | | 5.0 | | 35.0 | | 100 | | | Subject objectives | The aim of the course is to familiarize students with selected topics of computer graphics and computational geometry. | | | | | | | | | Data wygenerowania: 19.09.2025 15:47 Strona 1 z 2 | Learning outcomes | Course outcome | Subject outcome | Method of verification | | | | | |---|---|--|--|--|--|--|--| | | [K7_U09] constructs mathematical models used in specific advanced applications of mathematics, can use stochastic processes as a tool for modeling phenomena and analyzing their evolution, constructs mathematical models used in specific advanced applications of mathematics, uses stochastic processes as a tool for modeling phenomena and analyzing their evolution, recognizes mathematical structures in physical theories | The student is able to create and analyze basic algorithms used in computational geometry. Based on a verbal description of | [SU1] Assessment of task fulfilment [SU4] Assessment of ability to use methods and tools | | | | | | | deepen own understanding of a given topic or find missing elements of reasoning, understands the need to clearly present selected achievements of higher mathematics to laymen. | the problem, the student is able to formulate a precise model, find and complete the missing elements, and describe the solution obtained. | [SK1] Assessment of group work skills [SK5] Assessment of ability to solve problems that arise in practice | | | | | | | [K7_W03] demonstrates knowledge advanced computation techniques, supporting the work of a mathematician and understand their limitations. | The student knows the basic problems, methods and algorithms of computer graphics and computational geometry. | [SW1] Assessment of factual knowledge | | | | | | | [K7_U03] uses differential and integral calculus, elements of complex analysis, algebraic methods, applies them in typical practical | The student is able to apply methods of linear algebra, geometry, and analysis in solving computer graphics problems. | [SU4] Assessment of ability to
use methods and tools
[SU1] Assessment of task
fulfilment | | | | | | Subject contents | Geometric transormations in 2D and 3D. Homogenoeus coordinates. Projections in 2D and 3D. Representation of curves and surfaces: Bezier, B-splain and NURBS. Selected topics of rendering: colors, reflections, shading, ray tracing Data structures in computer graphics. Introduction to computational geometry. Convex hull. Intersections of lines and poygons. Triangulation. Voronoi diagrams. Delunay triangulation. On the laboratory, students prepare programming projects related to selected topics discussed during the lecture. | | | | | | | | Prerequisites and co-requisites | | | | | | | | | Assessment methods | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | | and criteria | Project assignments | 50.0% | 100.0% | | | | | | Recommended reading | Basic literature 1. D. Marsh, Applied geometry for computer graphics and CAD, Springer Science & Business Media, 2006 2. M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry. Algorithms and Applications. Third Ed., Springer Science & Business Me 2008 | | | | | | | | | supplementary literature brak | | | | | | | | | eResources addresses | | | | | | | | Example issues/ | 1. Using the PyGame library, write a program according to the given specification. | | | | | | | | example questions/
tasks being completed | Propose algorithms that solve simple geometric problems. Implement selected computational geometry algorithms and test the implementation. | | | | | | | | Work placement | Not applicable | | | | | | | | Work placement | Inot applicable | | | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 19.09.2025 15:47 Strona 2 z 2