Subject card | Subject name and code | Electrical Properties of Materials and Nanomaterials, PG_00069699 | | | | | | | | | |--|--|---|--|-------------------------------------|-------|--|--------------|------------|--| | Field of study | Nanotechnology | | | | | | | | | | Date of commencement of studies | October 2024 | | Academic year of realisation of subject | | | 2026/2027 | | | | | Education level | first-cycle studies | | Subject group | | | Optional subject group Subject group related to scientific research in the field of study | | | | | Mode of study | Full-time studies | | Mode of delivery | | | at the university | | | | | Year of study | 3 | | Language of instruction | | | Polish
none | | | | | Semester of study | 5 | | ECTS credits | | | 3.0 | | | | | Learning profile | general academic profile | | Assessment form | | | assessment | | | | | Conducting unit | Division of Ceramics -> Institute of Nanotechnology and Materials Engineering -> Faculty of Applied and Mathematics -> Wydziały Politechniki Gdańskiej | | | | | pplied Physics | | | | | Name and surname | Subject supervisor | | dr inż. Tadeusz Miruszewski | | | | | | | | of lecturer (lecturers) | Teachers | 1 | | | | | | | | | Lesson types and methods | Lesson type | Lecture | Tutorial | Laboratory | + ' + | | Seminar | SUM | | | of instruction | Number of study hours | 15.0 | 0.0 | 15.0 | 0.0 | | 0.0 | 30 | | | | E-learning hours included: 0.0 | | | | | | | | | | | eNauczanie source a | 1 | | | | T | | | | | Learning activity and number of study hours | Learning activity | Participation in
classes include
plan | | Participation in consultation hours | | Self-study | | SUM | | | | Number of study hours | 30 | 3.0 | | | 42.0 75 | | | | | Subject objectives | The aim of the course is to familiarize students with the properties of charge transport in nanocrystalline materials and with the research methodology for these properties. | | | | | | | | | | Learning outcomes | Course out | come | Subj | ect outcome | | | Method of ve | rification | | | | [K6_U02] can analyze and solve simple scientific and technical problems based on possessed knowledge, applying analytical, numerical, simulation and experimental methods. | | The student is able to interpret measurement data of charge transport properties in nanomaterials and ceramic materials. | | | [SU2] Assessment of ability to analyse information | | | | | | [K6_W09] Has knowledge of the structure and operation of scientific instruments, measuring and test equipment and in the field of planning and conducting a physical experiment and critical analysis of its results. | | properties in nanomaterials and ceramic materials. | | | [SW3] Assessment of knowledge contained in written work and projects [SW1] Assessment of factual knowledge | | | | | [K6_W07] has knowledge of the chemical princing nanotechnology obtaining obtainin | | ysical and of thods of ures, types of properties, | The student has knowledge of the electrical properties of nanomaterials and ceramics. | | | [SW3] Assessment of knowledge contained in written work and projects [SW1] Assessment of factual knowledge | | | | | Subject contents | Electrical conductivity of solids. Changes in the transport properties of materials when moving from the micro to the nanoscale. Diffusion phenomena in solids. Methods for measuring the electrical properties of solids. Analysis of sample test results and their interpretation. | | | | | | | | | Data wygenerowania: 26.09.2025 22:22 Strona 1 z 2 | Prerequisites and co-requisites | Physical basis of current flow in solids. | | | | | | |--|--|--|-------------------------------|--|--|--| | Assessment methods and criteria | Subject passing criteria | Passing threshold | Percentage of the final grade | | | | | | Report | 50.0% | 50.0% | | | | | | Exam | 50.0% | 50.0% | | | | | Recommended reading | Basic literature | Singh J. CHARGE TRANSPORT IN MATERIALS. In: Smart Electronic Materials: Fundamentals and Applications. Cambridge University Press; 2005:148-201. P.J. Gellings, The CRC Handbook of Solid State Electrochemistry, CRC Press, 1997 | | | | | | | Supplementary literature | none | | | | | | | eResources addresses | | | | | | | Example issues/
example questions/
tasks being completed | List the methods for measuring electrical conductivity in ceramics. State the assumptions of the four-point resistance measurement method. | | | | | | | Work placement | Not applicable | | | | | | Document generated electronically. Does not require a seal or signature. Data wygenerowania: 26.09.2025 22:22 Strona 2 z 2