

Subject card

Subject name and code	Spectroscopic research methods, PG_00067892								
Field of study	Technical Physics								
Date of commencement of studies	February 2026		Academic year of realisation of subject			2026/	2026/2027		
Education level	second-cycle studies		Subject group			Specialty subject group Subject group related to scientific research in the field of study			
Mode of study	Full-time studies		Mode of delivery			at the	at the university		
Year of study	1		Language of instruction			Polish			
Semester of study	2		ECTS credits			2.0	2.0		
Learning profile	general academic profile		Assessment form			asses	assessment		
Conducting unit	Department of Solid State Physics -> Faculty of Applied Physics and Mathematics -> Faculties of Gdańsk University of Technology								
Name and surname	Subject supervisor		dr hab. Tomasz Wąsowicz						
of lecturer (lecturers)	Teachers		dr hab. Toma	dr hab. Tomasz Wąsowicz					
Lesson types	Lesson type	Lecture	Tutorial	Laboratory	Projec	t	Seminar	SUM	
	Number of study hours	30.0	0.0	0.0	0.0		0.0	30	
	E-learning hours inclu	ıded: 0.0							
Learning activity and number of study hours	Learning activity Participation in classes include plan				Self-si	tudy	SUM		
	Number of study hours 30			3.0		17.0		50	
Subject objectives	The aim of the course is to discuss the basic theoretical and practical issues of spectroscopy and presentation of the various types of spectroscopic setups, methods and ways to interpret spectra.								
Learning outcomes	Course out	knowledge of physical models describing the structure and properties of radiation–matter			Method of verification				
	[K7_W02] has enhanced, theoretically-founded, detailed knowledge of selected field of physics, and sufficient knowledge of related fields of science or technology				[SW1] Assessment of factual knowledge [SW3] Assessment of knowledge contained in written work and projects				
	[K7_U07] has enhanced skill of preparing speeches in Polish and English, including presentation of own research results		coherent, logically structured oral presentations in Polish and			[SU5] Assessment of ability to present the results of task [SU1] Assessment of task fulfilment			
	[K7_W06] has enhanced knowledge of the experimental methods and techniques applied in physics		The student knows and understands selected advanced experimental techniques used in collisional spectroscopy and can explain their principles of operation and areas of application.			[SW1] Assessment of factual knowledge			

Data wygenerowania: 18.12.2025 15:01 Strona 1 z 5

Subject contents	Lecture:
	Concept of the atom
	Introduction to spectroscopic measurement
	Quantum-mechanical model of atom
	Fine structure
	Hyperfine structure
	Isotope shift of spectral lines
	Stark effect
	Zeeman effect
	Transition probabilities of radiative processes
	Types of chemical bonding
	Molecular optical spectroscopy in the UV-VIS range
	Fundamentals of vibrational spectroscopy
	Fundamentals of rotational spectra formation
	Vibrationalrotational spectroscopy
	Electronic structure of energy levels
	Explaining the principle of photodynamic therapy based on the Jablonski diagram
	Photon-induced dissociation
	X-ray absorption spectroscopy
	Scattering spectroscopy
	Mass spectrometry
	Molecular beams
	Laboratory:
	1. Study of a trochoidal electron monochromator; 2. Mass spectrometry using quadrupole mass analyser; 3. Electron impact fluorescence spectra of N2 molecule; 4. Measurement and analysis of emission and absorption spectra of molecules.

Data wygenerowania: 18.12.2025 15:01 Strona 2 z 5

Prerequisites and co-requisites	A course in atomic and molecular physics and quantum mechanics.					
Assessment methods	Subject passing criteria	Passing threshold	Percentage of the final grade			
and criteria	Performance of laboratory exercises and laboratory reports preparation	100.0%	40.0%			
	Solving tasks and problems as part of homework	50.0%	10.0%			
	Final test from the theory	50.0%	50.0%			
Recommended reading	Basic literature	[1] J.M.Hollas, Modern Spectroscopy, John Wiley & Sons, Ltd. [2] J.Sadlej, Molecular Spectroscopy, WNT, Warszawa (in Polish) [3] D.L.Pavia i in., Introduction to Spectroscopy, Brooks/Cole [4] Z.Kęcki, "Basics of molecular spectroscopy", PWN, Warszawa (in Polish) [5] P.Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications, John Wiley & Sons, Ltd.				
	Supplementary literature	[6] H. Haken, H. Ch. Wolf., "Molecular physics and elements of quantum chemistry", Springer [7] C.D.Wagner i in. Handbook of photoelectron spectroscopy, Perkin-Elmer Corporation [8] G.Bunker, Introduction to XAFS, Cambridge Univ. Press [9] A.Gołębiewski, Elements of quantum mechanics and chemistry, PWN (in Polish)				
	eResources addresses					

Data wygenerowania: 18.12.2025 15:01 Strona 3 z 5

Example issues/ example questions/ tasks being completed

- 1. What is a spectroscopy? Describe the types of spectroscopy due to the kind of radiation used.
- 2. What is a spectrum? Specify and describe the main parameters that characterize the spectral line shape.
- 3. List and describe the main causes of spectral lines broadening.
- 4. Define: transmittance, absorbance and absorption coefficient.
- 5. Describe term symbol which characterize atomic states under Russell-Saunders coupling (Spin-Orbit coupling) condition.
- 8. Write the selection rules for rotational transitions and define the rotational energy levels in a rigid rotor approximation.
- 9. How on the basis of rotation spectrum the molecule bond length can be determined (in a rigid rotor approximation)?
- 10. Write the selection rules for vibrational transitions and define the vibrational energy levels in an harmonic oscillator approximation.
- 11. Write the selection rules for vibrational transitions and define the vibrational energy levels for real oscillator (anharmonic oscillator).
- 12. How on the basis of vibration spectrum, bond energy of molecule can be determined?
- 13. Describe the shape of the vibration-rotation spectrum.
- 14. Raman spectroscopy: describe the origin and the idea of the phenomenon (e.g. on the basis of Placek polarizability theory) and shape of Raman spectrum.
- 15. Specify what the complementarity of Raman and IR spectroscopies means.
- 16. What is the origin of color of the transition metals complexes?
- 17. Explain the main cause of the line broadening observed in UV-Vis spectrum.
- 18. What is the auxochrome and how it can change the UV-Vis spectrum?
- 19. Explain hyperchromic and hypochromic effect, bathochromic and hypsochromic shift.
- 20. Photoelectron spectroscopy (PES, ESCA): describe the main idea of the technique and present the phenomena which accompanying the effect of the core electron photoexcitation (secondary effects, multi-electron effects).
- 21. Why photoelectron spectroscopy is a surface sensitive technique?
- 22. X-ray absorption spectroscopy (XAS): describe the origin of the phenomenon.
- 23. What kind of information can provide us X-ray absorption spectrum analysis close to absorption edge (XANES, X-ray absorption near edge structure)?
- 24. Explain the origin of the absorption coefficient fine structure observed in the extended energy range of X-ray absorption spectrum (EXAFS).

Data wygenerowania: 18.12.2025 15:01 Strona 4 z 5

	25. Why EXAFS (Extended X-ray Absorption Fine Structure) analysis is considered as a probe of local structure at the atomic level?
Practical activites within the subject	Not applicable

Document generated electronically. Does not require a seal or signature.

Data wygenerowania: 18.12.2025 15:01 Strona 5 z 5