
Data wygenerowania: 29.12.2025 16:54 Strona 1 z 5

Karta przedmiotu

Nazwa i kod przedmiotu Obiektowe języki programowania III, PG_00064060

Kierunek studiów Fizyka Techniczna

Data rozpoczęcia studiów październik 2024 r. Rok akademicki realizacji
przedmiotu

2026/2027

Poziom kształcenia I stopnia - inżynierskie Grupa zajęć Grupa zajęć fakultatywnych
Grupa zajęć powiązanych z
prowadzonymi badaniami
naukowymi w dziedzinie nauki
związanej z kierunkiem - profil
ogólnoakademicki

Forma studiów stacjonarne Sposób realizacji na uczelni

Rok studiów 3 Język wykładowy angielski

Semestr studiów 5 Liczba punktów ECTS 5.0

Profil kształcenia ogólnoakademicki Forma zaliczenia zaliczenie

Jednostka prowadząca Wydziały Politechniki Gdańskiej -> Wydział Fizyki Technicznej i Matematyki Stosowanej -> Katedra Fizyki
Teoretycznej i Informatyki Kwant.

Imię i nazwisko
wykładowcy (wykładowców)

Odpowiedzialny za przedmiot dr hab. Jan Franz
Prowadzący zajęcia z przedmiotu

Formy zajęć Forma zajęć Wykład Ćwiczenia Laboratorium Projekt Seminarium RAZEM
Liczba godzin zajęć 15.0 0.0 45.0 0.0 0.0 60
W tym liczba godzin zajęć na odległość: 0.0

Aktywność studenta
 i liczba godzin pracy

Aktywność studenta Udział w zajęciach
dydaktycznych, objętych
planem studiów

Udział w
konsultacjach

Praca własna
studenta

RAZEM

Liczba godzin pracy
studenta

60 5.0 60.0 125

Cel przedmiotu Celem kursu jest wprowadzenie studentów do programowania obiektowego (OOP) w języku Java ze
szczególnym uwzględnieniem zastosowań w fizyce i informatyce stosowanej. Studenci nauczą się
projektować, implementować i testować oprogramowanie naukowe z wykorzystaniem nowoczesnych
narzędzi, bibliotek i wzorców projektowych Javy. Nacisk położony jest na pisanie niezawodnego, łatwego w
utrzymaniu kodu oraz rozwijanie umiejętności potrzebnych w większych projektach badawczych i
technologicznych.

Data wygenerowania: 29.12.2025 16:54 Strona 2 z 5

Efekty uczenia się
przedmiotu

Efekt kierunkowy Efekt z przedmiotu Sposób weryfikacji i oceny efektu
[K6_W05] posiada wiedzę w
zakresie metodyki i technik
programowania oraz
wykorzystywania wybranych
narzędzi informatycznych w fizyce
i technice

potrafi stosować metody i techniki
programowania obiektowego oraz
efektywnie wykorzystywać
wybrane narzędzia informatyczne
do rozwiązywania problemów z
zakresu fizyki i technologii.

[SW1] Ocena wiedzy
faktograficznej

[K6_U03] posiada umiejętność
programowania w wybranym
języku oraz stosowania
podstawowych pakietów
oprogramowania

potrafi pisać programy w języku
obiektowym, korzystać z narzędzi
do zarządzania projektami,
stosować frameworki testowe oraz
wykorzystywać wybrane biblioteki
naukowe do rozwiązywania
problemów z zakresu fizyki i
technologii.

[SU1] Ocena realizacji zadania

[K6_W01] rozumie cywilizacyjne
znaczenie fizyki i jej zastosowań

potrafi modelować proste układy
fizyczne z wykorzystaniem
programowania obiektowego oraz
dostrzegać, jak umiejętności
obliczeniowe wspierają szersze
zastosowania fizyki w nauce i
technologii.

[SW2] Ocena wiedzy zawartej w
prezentacji

[K6_K01] rozumie potrzebę
uczenia się przez całe życie oraz
potrzebę podnoszenia
kompetencji zawodowych i
osobistych, inspiruje i organizuje
proces uczenia się innych osób

potrafi samodzielnie poszerzać
swoją wiedzę z zakresu
programowania obiektowego,
krytycznie stosować narzędzia i
wzorce projektowe
programowania obiektowego do
rozwiązywania problemów
naukowych oraz współpracować w
sposób wspierający i inspirujący
proces uczenia się innych.

[SK5] Ocena umiejętności
rozwiązywania problemów
występujących w praktyce

Data wygenerowania: 29.12.2025 16:54 Strona 3 z 5

Treści przedmiotu Treści przedmiotu - wykład
1. Ekosystem Javy i konfiguracja projektu

Java Virtual Machine (JVM), Java Development Kit (JDK), Zintegrowane Środowiska Programistyczne (IDE);
zarządzanie projektem za pomocą Maven i Gradle.

2. Klasy, obiekty i testowanie

Klasy, pola, metody, konstruktory; wprowadzenie do testów jednostkowych w JUnit.

3. Typy proste, klasy opakowujące, tablice i Efficient Java Matrix Library (EJML)

Typy proste kontra obiekty; tablice; klasy opakowujące; pierwsze użycie EJML.

4. Dziedziczenie i interfejsy

Dziedziczenie, przesłanianie metod, klasy abstrakcyjne, interfejsy.

5. Wyjątki i niezawodny kod

Wyjątki sprawdzane i niesprawdzane; strategie obsługi błędów.

6. Framework kolekcji

List, Set, Map; iteratory; kiedy stosować kolekcje.

7. Wzorce projektowe I

Factory, Singleton, Observer (z prostymi ilustracjami w Unified Modeling Language UML).

8. Klasy i metody generyczne oraz kolekcje w praktyce

Klasy i metody generyczne; implementacje kolekcji.

9. Refaktoryzacja i praktyki testowania

spójność, powiązania, zasady SOLID (Single responsibility, Openclosed, Liskov substitution, Interface
segregation, Dependency inversion); programowanie sterowane testami (TDD).

10. Wyrażenia lambda (podstawy)

interfejsy funkcyjne, składnia lambda.

11. Strumienie i zastosowania lambd

Stream Application Programming Interface (API): map, filter, reduce; strumienie równoległe.

12. Biblioteki naukowe w Javie

EJML w większych szczegółach; Apache Commons Math; JavaScript Object Notation (JSON) i Extensible
Markup Language (XML).

Data wygenerowania: 29.12.2025 16:54 Strona 4 z 5

13. Wzorce projektowe II i organizacja projektu.

Strategy, Composite, modularna struktura projektu w Maven/Gradle.

14. Prezentacje projektów studenckich

Podsumowanie programowania obiektowego (OOP) w Javie i integracja narzędzi.

15. Podsumowanie i perspektywy

Kierunki rozwoju w programowaniu (trendy w Javie, współbieżność, styl funkcyjny, programowanie
wspomagane sztuczną inteligencją AI).

Treści przedmiotu - laboratoria
1. Ekosystem Javy i konfiguracja projektu

Utworzenie pierwszego projektu Maven; uruchomienie prostego programu związanego z fizyką.

2. Klasy, obiekty i testowanie

Implementacja klasy Particle oraz podstawowe testy jednostkowe.

3. Typy proste, klasy opakowujące, tablice i Efficient Java Matrix Library (EJML)

Operacje wektorowe przy użyciu tablic i EJML.

4. Dziedziczenie i interfejsy

Hierarchia klas dla różnych typów cząstek.

5. Wyjątki i niezawodny kod

Niezawodna obsługa wejścia/wyjścia (I/O) oraz obsługa błędów w prostej symulacji.

6. Framework kolekcji

Przechowywanie i analiza trajektorii cząstek z użyciem kolekcji.

7. Wzorce projektowe I

Implementacja fabryki cząstek i obserwatora do logowania.

8. Klasy i metody generyczne oraz kolekcje w praktyce

Generyczne kontenery na wyniki; wykorzystanie posortowanych zbiorów/map.

9. Refaktoryzacja i praktyki testowania

Refaktoryzacja wcześniejszego kodu i rozszerzenie testów jednostkowych.

Data wygenerowania: 29.12.2025 16:54 Strona 5 z 5

10. Wyrażenia lambda (podstawy)

Zastosowanie lambd do prostych transformacji numerycznych.

11. Strumienie i zastosowania lambd

Analiza wyników symulacji przy użyciu strumieni.

12. Biblioteki naukowe w Javie

Rozwiązywanie układów równań liniowych i parsowanie danych z plików.

13. Wzorce projektowe II i organizacja projektu.

Zastosowanie wzorca Strategy do wyboru modeli symulacji.

14. Prezentacje projektów studenckich

Prezentacje końcowe projektów wraz z krótkimi wystąpieniami.

15. Podsumowanie i perspektywy

Dyskusja, jak umiejętności zdobyte na kursie można zastosować w projektach badawczych.

Wymagania wstępne
i dodatkowe

Obiektowe języki programowania 1 i 2

Sposoby i kryteria
oceniania osiąganych
efektów uczenia się

Sposób oceniania (składowe) Próg zaliczeniowy Składowa oceny końcowej
zaliczenie wykładu 50.0% 75.0%
zaliczenie laboratorium 50.0% 25.0%

Zalecana lista lektur Podstawowa lista lektur 1. Joshua Bloch, Java. Efektywne programowanie. Wydanie III,
Helion, 2018

2. Raoul-Gabriel Urma, Mario Fusco, Alan Mycroft, Nowoczesna
Java w działaniu, Helion, 2019

Uzupełniająca lista lektur 1. Cay S. Horstmann, Java. Podstawy. Wydanie X, Helion, 2016
2. Cay S. Horstmann, Java. Techniki zaawansowane. Wydanie X,

Helion 2016
3. Herbert Schildt, Java. Kompendium programisty. Wydanie X,

Helion 2018
Adresy eZasobów

Przykładowe zagadnienia/
przykładowe pytania/
realizowane zadania

1.) Otrzymujesz pojedynczą klasę Simulation, która bezpośrednio obsługuje wejście z pliku,
przechowywanie danych, obliczenia i wypisywanie wyników. Wskaż co najmniej dwa problemy z takim
projektem. Zaproponuj strategię refaktoryzacji przy użyciu oddzielnych klas lub pakietów.
2.) Zadanie programistyczne: Symulacja rozpadu promieniotwórczego
Zaimplementuj klasę Particle z atrybutami (id, okres połowicznego rozpadu, stan). Przechowuj cząstki w
kolekcji i symuluj rozpad krok po kroku, korzystając z liczb losowych. Obsłuż niepoprawne dane wejściowe
za pomocą wyjątków. Dodaj co najmniej jeden test jednostkowy JUnit. Wypisz liczbę nierozpadłych cząstek
po każdym kroku.

Zajęcia praktyczne
w ramach przedmiotu

Nie dotyczy

Dokument wygenerowany elektronicznie. Nie wymaga pieczęci ani podpisu.

